• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.037 seconds

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

Trends in Deep Learning Inference Engines for Embedded Systems (임베디드 시스템용 딥러닝 추론엔진 기술 동향)

  • Yoo, Seung-mok;Lee, Kyung Hee;Park, Jaebok;Yoon, Seok Jin;Cho, Changsik;Jung, Yung Joon;Cho, Il Yeon
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.4
    • /
    • pp.23-31
    • /
    • 2019
  • Deep learning is a hot topic in both academic and industrial fields. Deep learning applications can be categorized into two areas. The first category involves applications such as Google Alpha Go using interfaces with human operators to run complicated inference engines in high-performance servers. The second category includes embedded applications for mobile Internet-of-Things devices, automotive vehicles, etc. Owing to the characteristics of the deployment environment, applications in the second category should be bounded by certain H/W and S/W restrictions depending on their running environment. For example, image recognition in an autonomous vehicle requires low latency, while that on a mobile device requires low power consumption. In this paper, we describe issues faced by embedded applications and review popular inference engines. We also introduce a project that is being development to satisfy the H/W and S/W requirements.

Enhancing Work Trade Image Classification Performance Using a Work Dependency Graph (공정의 선후행관계를 이용한 공종 이미지 분류 성능 향상)

  • Jeong, Sangwon;Jeong, Kichang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.106-115
    • /
    • 2021
  • Classifying work trades using images can serve an important role in a multitude of advanced applications in construction management and automated progress monitoring. However, images obtained from work sites may not always be clean. Defective images can damage an image classifier's accuracy which gives rise to a needs for a method to enhance a work trade image classifier's performance. We propose a method that uses work dependency information to aid image classifiers. We show that using work dependency can enhance the classifier's performance, especially when a base classifier is not so great in doing its job.

PointNet and RandLA-Net Algorithms for Object Detection Using 3D Point Clouds (3차원 포인트 클라우드 데이터를 활용한 객체 탐지 기법인 PointNet과 RandLA-Net)

  • Lee, Dong-Kun;Ji, Seung-Hwan;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.330-337
    • /
    • 2022
  • Research on object detection algorithms using 2D data has already progressed to the level of commercialization and is being applied to various manufacturing industries. Object detection technology using 2D data has an effective advantage, there are technical limitations to accurate data generation and analysis. Since 2D data is two-axis data without a sense of depth, ambiguity arises when approached from a practical point of view. Advanced countries such as the United States are leading 3D data collection and research using 3D laser scanners. Existing processing and detection algorithms such as ICP and RANSAC show high accuracy, but are used as a processing speed problem in the processing of large-scale point cloud data. In this study, PointNet a representative technique for detecting objects using widely used 3D point cloud data is analyzed and described. And RandLA-Net, which overcomes the limitations of PointNet's performance and object prediction accuracy, is described a review of detection technology using point cloud data was conducted.

Non-manner parking enforcement system (비매너 주차 단속시스템)

  • Park, Sang-min;Son, Byung-Soo;Kim, Myung-sik;Choe, Byeong-Yun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.603-604
    • /
    • 2021
  • It is a enforcement system to prevent collisions caused by unmanageable parking that may occur in parking lots. There are handicapped people who can get up in parking lots, general vehicles parked in electric vehicle parking areas, and vehicles parked in two lanes. The vehicle above is detected and notified through the deep learning object recognition function. By using a picture or video of an unmanageable parking situation as learning data, the learning data is produced so that the situation can be recognized, and the situation is recognized to determine the presence or absence of unmanageable parking. The purpose is to reduce collisions between parking lot users by making the environment of the parking lot more comfortable.

  • PDF

Recognition of Classification of Traffic Sign Images Using CNN (CNN을 활용한 교통 표지판 이미지 분류 인식)

  • MunJeong Kim;Sinrock Chae;EunKi Hong;Min Hwangbo;Yoo-Jin Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.317-318
    • /
    • 2023
  • 본 논문에서는 CNN(Convolutional Neural Network)을 활용하여 자율주행 자동차가 각 국가별 교통 규칙 및 도로 표시를 이해하고 정확한 주행을 할 수 있도록, Deep Neural Network 시스템을 설계하고 구현하는 방법을 제안한다. 연구 방법으로는 한국도로교통공단(koroad)에서 제공하는 교통안전표지 일람표 이미지를 학습하여, 차량이 자율주행을 하기 위해 요구되는 표지판을 인식할 수 있도록 하였다. 본 논문에서 설계한 학습 시스템으로 도로교통표지판의 인식에 성공했으며, 이를 통해 자율주행차량이 표지판을 인식할 수 있으며, 시각장애인 및 고령운전자를 위한 지원 역시 가능하다고 사료된다.

  • PDF

Design of an App for Growing Companion Plants using Smart Farm Technology (스마트 팜 기술을 이용한 반려식물 키우기 앱 설계)

  • Ok-Kyoon Ha;Hyeon-sang Soon;Hyoun-jun Lee;Chang-hui Seo;Seong-hun Jo;Ji-yun Kang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.455-456
    • /
    • 2023
  • 현대인들의 바쁜 생활방식과 그로 인한 1인 가구 비율의 증가 등 사회적 요소로 인해 외로움을 겪으면서 우울증을 호소하는 사람이 증가하고 있고, 이에 따라 반려식물에 대한 관심과 시장이 증가하고 있다. 기존의 스마트 팜 시스템 관련 기술은 자동화 및 액추에이터 제어, 데이터 분석 및 예측 등 자동화와 정보 제공을 목적으로 사용되고 있다. 홈 가드닝을 통한 식물 키우기에 대한 관심 증가와 더불어 반려식물로 식물에 대한 교감을 제공하는 기능은 제공되지 않고 있다. 본 논문에서는 반려식물의 상태를 감정으로 전달하는 디지털 기반의 홈가드닝 앱을 제시한다. 제시하는 앱은 실제 스마트 팜 시스템과 실시간으로 연결되어 식물의 성장에 따라 변화하는 모습을 적합한 식물 캐릭터로 바꾸어 시각적으로 제공한다. 또한, 딥러닝 기술을 이용하여 식물의 성장 단계를 자동으로 분류하고, 식물의 생육 환경을 판단하여 캐럭터화된 식물의 표정을 제공한다. 제시하는 앱은 반려식물을 키우는 사람의 노동력을 줄여주고, 반려식물과의 교감을 제공하는 다양한 경험을 제시할 수 있다.

  • PDF

Two-Stage Deep Learning Based Algorithm for Cosmetic Object Recognition (화장품 물체 인식을 위한 Two-Stage 딥러닝 기반 알고리즘)

  • Jongmin Kim;Daeho Seo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.101-106
    • /
    • 2023
  • With the recent surge in YouTube usage, there has been a proliferation of user-generated videos where individuals evaluate cosmetics. Consequently, many companies are increasingly utilizing evaluation videos for their product marketing and market research. However, a notable drawback is the manual classification of these product review videos incurring significant costs and time. Therefore, this paper proposes a deep learning-based cosmetics search algorithm to automate this task. The algorithm consists of two networks: One for detecting candidates in images using shape features such as circles, rectangles, etc and Another for filtering and categorizing these candidates. The reason for choosing a Two-Stage architecture over One-Stage is that, in videos containing background scenes, it is more robust to first detect cosmetic candidates before classifying them as specific objects. Although Two-Stage structures are generally known to outperform One-Stage structures in terms of model architecture, this study opts for Two-Stage to address issues related to the acquisition of training and validation data that arise when using One-Stage. Acquiring data for the algorithm that detects cosmetic candidates based on shape and the algorithm that classifies candidates into specific objects is cost-effective, ensuring the overall robustness of the algorithm.

Implementation of a Harmful Bird Repellent System using Directional Speakers

  • Hwa-La Hur;Myeong-Chul Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.97-104
    • /
    • 2023
  • In this paper, we propose a harmful bird repellent system using directional speakers. Existing sound systems for the extermination of harmful birds have the disadvantage of reducing effectiveness due to the learning effect of birds due to problems caused by noise pollution and monotonous sounds. In this paper, directional speakers are used to minimize surrounding noise. In addition, the up-down and left-right angles of the speaker driving device were freely adjusted to maximize usability. Additionally, the problem of performance degradation due to learning effects was solved by using various scanning patterns. In the future, we plan to develop a platform capable of central control by applying remote control functions and a deep learning model that can recognize bird species.

Research on High-resolution Seafloor Topography Generation using Feature Extraction Algorithm Based on Deep Learning (딥러닝 기반의 특징점 추출 알고리즘을 활용한 고해상도 해저지형 생성기법 연구)

  • Hyun Seung Kim;Jae Deok Jang;Chul Hyun;Sung Kyun Lee
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.spc1
    • /
    • pp.90-96
    • /
    • 2024
  • In this paper, we propose a technique to model high resolution seafloor topography with 1m intervals using actual water depth data near the east coast of the Korea with 1.6km distance intervals. Using a feature point extraction algorithm that harris corner based on deep learning, the location of the center of seafloor mountain was calculated and the surrounding topology was modeled. The modeled high-resolution seafloor topography based on deep learning was verified within 1.1m mean error between the actual warder dept data. And average error that result of calculating based on deep learning was reduced by 54.4% compared to the case that deep learning was not applied. The proposed algorithm is expected to generate high resolution underwater topology for the entire Korean peninsula and be used to establish a path plan for autonomous navigation of underwater vehicle.