• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.031 seconds

COVID-19 Chat Bot by using Deep Learning (딥러닝을 이용한 코로나 챗봇)

  • Lee, Se-Hoon;Jeong, Ji-Seok;Kim, Young-Jin;Kwon, Hyeon-guen;Seo, Hee-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.315-316
    • /
    • 2020
  • 본 논문에서는 현재 이슈가 되고 있는 코로나에 대해서 사람들이 실생활에서 궁금해할 정보들을 Seq2seq 기술을 사용한 챗봇으로 정보를 제공한다.

  • PDF

A Risk Prediction System of Air Pollution Influencing Diseases Utilzing Keras (Keras를 이용한 대기오염이 유해질환에 미치는 위험 예측 시스템)

  • Lee, Jisu;Lee, Yu-jeong;Yoon, Soo-han;Moon, Yoo-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.11-12
    • /
    • 2022
  • 이 연구는 대기오염과 미세먼지의 각 성분이 질환에 미치는 영향에 대한 데이터만 존재한다면 어떠한 질환이든 위험도 예측 결과를 알 수 있는 것에 의미가 있다. 또한 기존의 대기정보에 따른 정보를 예상하는데 필요한 데이터 종류와 수가 많았으며 계산의 복잡성이 높았고 정보의 제공 범위가 넓었다. 하지만 이 연구는 과거 대기 데이터와 딥러닝을 통해서 낮은 비용으로 더욱 자세하게 유해질환 위험도를 예측하는 시스템을 구축하였다. 이 연구에서 구축한 시스템은 예측 결과 88.9%의 정확도를 보였다. 이 시스템은 입력되는 데이터의 정보에 따라 세분화된 지역의 대기환경 정보 또한 파악 가능하며 그 과정이 매우 간편하고 유용하다. 이 시스템은 공기질 예측을 위해 유용하게 사용될 수 있을 것이라고 사료된다.

  • PDF

Deep learning-based Multilingual Sentimental Analysis using English Review Data (영어 리뷰데이터를 이용한 딥러닝 기반 다국어 감성분석)

  • Sung, Jae-Kyung;Kim, Yung Bok;Kim, Yong-Guk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.9-15
    • /
    • 2019
  • Large global online shopping malls, such as Amazon, offer services in English or in the language of a country when their products are sold. Since many customers purchase products based on the product reviews, the shopping malls actively utilize the sentimental analysis technique in judging preference of each product using the large amount of review data that the customer has written. And the result of such analysis can be used for the marketing to look the potential shoppers. However, it is difficult to apply this English-based semantic analysis system to different languages used around the world. In this study, more than 500,000 data from Amazon fine food reviews was used for training a deep learning based system. First, sentiment analysis evaluation experiments were carried out with three models of English test data. Secondly, the same data was translated into seven languages (Korean, Japanese, Chinese, Vietnamese, French, German and English) and then the similar experiments were done. The result suggests that although the accuracy of the sentimental analysis was 2.77% lower than the average of the seven countries (91.59%) compared to the English (94.35%), it is believed that the results of the experiment can be used for practical applications.

Artificial Intelligence-based Security Control Construction and Countermeasures (인공지능기반 보안관제 구축 및 대응 방안)

  • Hong, Jun-Hyeok;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.531-540
    • /
    • 2021
  • As cyber attacks and crimes increase exponentially and hacking attacks become more intelligent and advanced, hacking attack methods and routes are evolving unpredictably and in real time. In order to reinforce the enemy's responsiveness, this study aims to propose a method for developing an artificial intelligence-based security control platform by building a next-generation security system using artificial intelligence to respond by self-learning, monitoring abnormal signs and blocking attacks.The artificial intelligence-based security control platform should be developed as the basis for data collection, data analysis, next-generation security system operation, and security system management. Big data base and control system, data collection step through external threat information, data analysis step of pre-processing and formalizing the collected data to perform positive/false detection and abnormal behavior analysis through deep learning-based algorithm, and analyzed data Through the operation of a security system of prevention, control, response, analysis, and organic circulation structure, the next generation security system to increase the scope and speed of handling new threats and to reinforce the identification of normal and abnormal behaviors, and management of the security threat response system, Harmful IP management, detection policy management, security business legal system management. Through this, we are trying to find a way to comprehensively analyze vast amounts of data and to respond preemptively in a short time.

Deep Learning-based Forest Fire Classification Evaluation for Application of CAS500-4 (농림위성 활용을 위한 산불 피해지 분류 딥러닝 알고리즘 평가)

  • Cha, Sungeun;Won, Myoungsoo;Jang, Keunchang;Kim, Kyoungmin;Kim, Wonkook;Baek, Seungil;Lim, Joongbin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1273-1283
    • /
    • 2022
  • Recently, forest fires have frequently occurred due to climate change, leading to human and property damage every year. The forest fire monitoring technique using remote sensing can obtain quick and large-scale information of fire-damaged areas. In this study, the Gangneung and Donghae forest fires that occurred in March 2022 were analyzed using the spectral band of Sentinel-2, the normalized difference vegetation index (NDVI), and the normalized difference water index (NDWI) to classify the affected areas of forest fires. The U-net based convolutional neural networks (CNNs) model was simulated for the fire-damaged areas. The accuracy of forest fire classification in Donghae and Gangneung classification was high at 97.3% (f1=0.486, IoU=0.946). The same model used in Donghae and Gangneung was applied to Uljin and Samcheok areas to get rid of the possibility of overfitting often happen in machine learning. As a result, the portion of overlap with the forest fire damage area reported by the National Institute of Forest Science (NIFoS) was 74.4%, confirming a high level of accuracy even considering the uncertainty of the model. This study suggests that it is possible to quantitatively evaluate the classification of forest fire-damaged area using a spectral band and indices similar to that of the Compact Advanced Satellite 500 (CAS500-4) in the Sentinel-2.

A Study on Deep Learning based Aerial Vehicle Classification for Armament Selection (무장 선택을 위한 딥러닝 기반의 비행체 식별 기법 연구)

  • Eunyoung, Cha;Jeongchang, Kim
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.936-939
    • /
    • 2022
  • As air combat system technologies developed in recent years, the development of air defense systems is required. In the operating concept of the anti-aircraft defense system, selecting an appropriate armament for the target is one of the system's capabilities in efficiently responding to threats using limited anti-aircraft power. Much of the flying threat identification relies on the operator's visual identification. However, there are many limitations in visually discriminating a flying object maneuvering high speed from a distance. In addition, as the demand for unmanned and intelligent weapon systems on the modern battlefield increases, it is essential to develop a technology that automatically identifies and classifies the aircraft instead of the operator's visual identification. Although some examples of weapon system identification with deep learning-based models by collecting video data for tanks and warships have been presented, aerial vehicle identification is still lacking. Therefore, in this paper, we present a model for classifying fighters, helicopters, and drones using a convolutional neural network model and analyze the performance of the presented model.

Scaling Attack Method for Misalignment Error of Camera-LiDAR Calibration Model (카메라-라이다 융합 모델의 오류 유발을 위한 스케일링 공격 방법)

  • Yi-ji Im;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1099-1110
    • /
    • 2023
  • The recognition system of autonomous driving and robot navigation performs vision work such as object recognition, tracking, and lane detection after multi-sensor fusion to improve performance. Currently, research on a deep learning model based on the fusion of a camera and a lidar sensor is being actively conducted. However, deep learning models are vulnerable to adversarial attacks through modulation of input data. Attacks on the existing multi-sensor-based autonomous driving recognition system are focused on inducing obstacle detection by lowering the confidence score of the object recognition model.However, there is a limitation that an attack is possible only in the target model. In the case of attacks on the sensor fusion stage, errors in vision work after fusion can be cascaded, and this risk needs to be considered. In addition, an attack on LIDAR's point cloud data, which is difficult to judge visually, makes it difficult to determine whether it is an attack. In this study, image scaling-based camera-lidar We propose an attack method that reduces the accuracy of LCCNet, a fusion model (camera-LiDAR calibration model). The proposed method is to perform a scaling attack on the point of the input lidar. As a result of conducting an attack performance experiment by size with a scaling algorithm, an average of more than 77% of fusion errors were caused.

2D Artificial Data Set Construction System for Object Detection and Detection Rate Analysis According to Data Characteristics and Arrangement Structure: Focusing on vehicle License Plate Detection (객체 검출을 위한 2차원 인조데이터 셋 구축 시스템과 데이터 특징 및 배치 구조에 따른 검출률 분석 : 자동차 번호판 검출을 중점으로)

  • Kim, Sang Joon;Choi, Jin Won;Kim, Do Young;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.185-197
    • /
    • 2022
  • Recently, deep learning networks with high performance for object recognition are emerging. In the case of object recognition using deep learning, it is important to build a training data set to improve performance. To build a data set, we need to collect and label the images. This process requires a lot of time and manpower. For this reason, open data sets are used. However, there are objects that do not have large open data sets. One of them is data required for license plate detection and recognition. Therefore, in this paper, we propose an artificial license plate generator system that can create large data sets by minimizing images. In addition, the detection rate according to the artificial license plate arrangement structure was analyzed. As a result of the analysis, the best layout structure was FVC_III and B, and the most suitable network was D2Det. Although the artificial data set performance was 2-3% lower than that of the actual data set, the time to build the artificial data was about 11 times faster than the time to build the actual data set, proving that it is a time-efficient data set building system.

Development of Artificial Intelligence Simulator of Seven Ordinary Poker Game (7포커 인공지능 시뮬레이터 구현)

  • Hur, Jong-Moon;Won, Jae-Yeon;Cho, Jae-hee;Rho, Young-J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.277-283
    • /
    • 2018
  • Some innovative researchers have had a dream of self-thinking intelligent computer. Alphago, at last, showed its possibility. With it, most computer engineers including even students can learn easily how to do it. As the interest to the deep learning has been growing, people's expectation is also naturally growing. In this research, we tried to enhance the game ability of a 7-poker system by applying machine learning techniques. In addition, we also tried to apply emotion analysis of a player to trace ones emotional changes. Methods and outcomes are to be explained in this paper.

Deep Learning for Remote Sensing Applications (원격탐사활용을 위한 딥러닝기술)

  • Lee, Moung-Jin;Lee, Won-Jin;Lee, Seung-Kuk;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1581-1587
    • /
    • 2022
  • Recently, deep learning has become more important in remote sensing data processing. Huge amounts of data for artificial intelligence (AI) has been designed and built to develop new technologies for remote sensing, and AI models have been learned by the AI training dataset. Artificial intelligence models have developed rapidly, and model accuracy is increasing accordingly. However, there are variations in the model accuracy depending on the person who trains the AI model. Eventually, experts who can train AI models well are required more and more. Moreover, the deep learning technique enables us to automate methods for remote sensing applications. Methods having the performance of less than about 60% in the past are now over 90% and entering about 100%. In this special issue, thirteen papers on how deep learning techniques are used for remote sensing applications will be introduced.