• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.035 seconds

비파괴 작물 생육측정장치 개발 및 활용방법

  • 정수호;이형석;조혜성;조연진;안호섭;정종모;김희곤
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.24-24
    • /
    • 2023
  • 현대화된 재배법은 작물의 생육을 위해 시설내부의 환경을 제어하고 실시간 센싱 정보를 저장하는 시스템을 구축하고 이를 활용하고 있으나, 작물의 생육·생장에 미치는 직접적인 영향에 대한 생육데이터 취득은 아직까지도 전문 재배사·농민이 수작업을 통해 조사되고 있다. 본 연구는 작물의 생육데이터 자동 취득을 위한 장치를 개발하고 이를 실용화하기 위한 정확도 측정 시험을 진행하였다. 실험을 위한 장치구성은 3D Depth 카메라(Intel D415)와 운용 PC이며 딥러닝 모델을 이용하여 작물의 세부기관을 자동으로 인식하는 모델을 포함한다. 장치는 다양한 재배환경의 작물 생육데이터 취득을 위하여 휴대용, 고정형, 로봇형 3가지 유형으로 개발하였고 측정 정확도 검증은 휴대용 생육측정장치를 활용하여 조사하였다. 이러한 연구를 통해 수작업이 아닌 영상에 의한 생육 데이터수집으로 작물의 생육정보(측정값+이미지)를 확보함으로써 환경데이터와 함께 객관적인 정보에 의한 작물의 생산량, 수확시기 등을 예측하는데 활용될 수 있을것으로 예상된다.

  • PDF

Prediction of Battery Package Temperature Rise with LSTM(Long Short-Term Memory) (LSTM(Long Short-Term Memory)을 활용한 Battery Package 온도 상승 예측)

  • Cho Jong Hwa;Min Youn A
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.339-341
    • /
    • 2024
  • 본 논문에서는 전기 자동차 배터리 팩 설계에서 성능 예측을 위해 전산유체해석 및 Long Short-Term Memory (LSTM)를 활용한다. 두 계산 모두의 예측이 상당한 유사성을 나타내며, 전산유체해석은 시스템 유체 역학을 고려한 상세한 물리 모델을 제공하고, LSTM은 시계열 데이터를 기반으로 한 딥러닝 모델로 효과적으로 패턴을 파악, 향후 온도 상승을 예측한다. 결과는 두 접근 모두가 효과적인 예측을 제공하며 향후 전기 자동차 배터리 팩 설계 및 최적화에서 종합적인 접근의 필요성을 강조한다. 특히, LSTM 기반 예측에 소요되는 시간은 계산 유체 역학의 약 25%로, 약 일주일 정도로 빠르게 확인 가능하다. 이는 현대 산업 환경에서 시간적 효율성이 중요한 측면을 강조하며, 계산 유체 역학의 상세한 물리 모델링과 LSTM의 빠른 예측 속도를 결합한 설계 방법론을 제안한다.

  • PDF

A Real-Time Detection System for Gas Leakage of Hazardous Chemicals Using AI (AI를 활용한 유해 화학물질 가스 누출 실시간 감지 시스템)

  • Ki-taek Shin;Hye-ri Jang;Su-hyeong Jho;Ye-rim Hong
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.1022-1023
    • /
    • 2024
  • 전 세계적으로 항만 화재 사고는 매년 30만 건 이상 발생하고 있으며, 한 번의 사고 발생 시 손해액은 수백만 달러에서 수억까지 발생한다. 본 연구는 항만 및 산업 현장에서 발생할 수 있는 화재와 연기를 조기에 감지하기 위해, 기존의 관제 방식과 공공 CCTV에 딥러닝 기반 컴퓨터 비전 기술을 접목한 모델을 제안하고 구현하였다. 이 모델을 적용함으로써 항만 근로자들의 안전을 강화하고 경제적, 환경적 손실을 최소화할 수 있을 것으로 기대된다.

Development of a YOLOv8-Based Sashimi Image Recognition Mobile Application (YOLOv8 기반의 회 이미지 인식 모바일 애플리케이션 개발)

  • Jane Park;Youngseob Lim;Minhee Kang;Injun Kim;Yongju Cho
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.416-417
    • /
    • 2024
  • 본 연구에서는 YOLOv8 모델을 활용해 다양한 회의 종류를 인식할 수 있는 모바일 애플리케이션을 개발하였다. 완성된 애플리케이션은 사용자가 모둠회 사진을 촬영하면, 학습된 딥러닝 모델이 이미지를 처리하여 해당 회의 종류를 인식한다. 본 논문에서는 애플리케이션의 시스템 설계와 구현 과정, 성능 평가 결과를 제시하며, 사용자가 실시간으로 인식 결과를 확인할 수 있는 기능을 중점적으로 다룬다.

Enhancing the Applicability of a Multi-Disease Classification Model with Cyclic Learning (순환학습 기반 다중 안질환 분류 모델의 적용성 확장에 관한 연구)

  • Honggu Kang;Dahyun Mok;Huigyu Yang;Hyunseung Choo
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.744-747
    • /
    • 2024
  • 고령화로 인해 실명을 유발하는 안질환의 발병률이 지속적으로 증가하고 있다. 이에 본 연구는 딥러닝 기반의 안저사진 분석을 통해 다중 안질환 분류 모델의 적용성을 향상시키고자 한다. Ocular Disease Intelligent Recognition (ODIR) dataset과 같은 다양한 공용 데이터셋에 순환학습과 regularization 기법을 적용하여 녹내장, 백내장, 황반변성 등의 질환을 효과적으로 분류를 돕는 기법을 제안한다. 이를 통해 안질환 진단의 정확성을 높이고, 임상에서 활용가능한 신뢰성 있는 안질환 진단 모델을 구축하고자 한다.

Machine Learning-based Detection of HTTP DoS Attacks for Cloud Web Applications (머신러닝 기반 클라우드 웹 애플리케이션 HTTP DoS 공격 탐지)

  • Jae Han Cho;Jae Min Park;Tae Hyeop Kim;Seung Wook Lee;Jiyeon Kim
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.66-75
    • /
    • 2023
  • Recently, the number of cloud web applications is increasing owing to the accelerated migration of enterprises and public sector information systems to the cloud. Traditional network attacks on cloud web applications are characterized by Denial of Service (DoS) attacks, which consume network resources with a large number of packets. However, HTTP DoS attacks, which consume application resources, are also increasing recently; as such, developing security technologies to prevent them is necessary. In particular, since low-bandwidth HTTP DoS attacks do not consume network resources, they are difficult to identify using traditional security solutions that monitor network metrics. In this paper, we propose a new detection model for detecting HTTP DoS attacks on cloud web applications by collecting the application metrics of web servers and learning them using machine learning. We collected 18 types of application metrics from an Apache web server and used five machine learning and two deep learning models to train the collected data. Further, we confirmed the superiority of the application metrics-based machine learning model by collecting and training 6 additional network metrics and comparing their performance with the proposed models. Among HTTP DoS attacks, we injected the RUDY and HULK attacks, which are low- and high-bandwidth attacks, respectively. As a result of detecting these two attacks using the proposed model, we found out that the F1 scores of the application metrics-based machine learning model were about 0.3 and 0.1 higher than that of the network metrics-based model, respectively.

A Study on the Media Recommendation System with Time Period Considering the Consumer Contextual Information Using Public Data (공공 데이터 기반 소비자 상황을 고려한 시간대별 미디어 추천 시스템 연구)

  • Kim, Eunbi;Li, Qinglong;Chang, Pilsik;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.95-117
    • /
    • 2022
  • With the emergence of various media types due to the development of Internet technology, advertisers have difficulty choosing media suitable for corporate advertising strategies. There are challenging to effectively reflect consumer contextual information when advertising media is selected based on traditional marketing strategies. Thus, a recommender system is needed to analyze consumers' past data and provide advertisers with personalized media based on the information consumers needs. Since the traditional recommender system provides recommendation services based on quantitative preference information, there is difficult to reflect various contextual information. This study proposes a methodology that uses deep learning to recommend personalized media to advertisers using consumer contextual information such as consumers' media viewing time, residence area, age, and gender. This study builds a recommender system using media & consumer research data provided by the Korea Broadcasting Advertising Promotion Corporation. Additionally, we evaluate the recommendation performance compared with several benchmark models. As a result of the experiment, we confirmed that the recommendation model reflecting the consumer's contextual information showed higher accuracy than the benchmark model. We expect to contribute to helping advertisers make effective decisions when selecting customized media based on various contextual information of consumers.

Design of Port Security System Using Deep Learning and Object Features (딥러닝과 객체 특징점을 활용한 항만 보안시스템 설계)

  • Wang, Tae-su;Kim, Minyoung;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.50-53
    • /
    • 2022
  • Recently, there have been cases in which counterfeit foreign ships have entered and left domestic ports several times. Vessels have a ship-specific serial number given by the International Maritime Organization (IMO) to identify the vessel, and IMO marking is mandatory on all ships built since 2004. In the case of airports and ports, which are representative logistics platforms, a security system is essential, but it is difficult to establish a security system at a port and there are many blind spots, which can cause security problems due to insufficient security systems. In this paper, a port security system is designed using deep learning object recognition and OpenCV. The security system process extracts the IMO number of the ship after recognizing the object when entering the ship, determines whether it is the same ship through feature point matching for ships with entry records, and stores the ship image and IMO number in the entry/exit DB for the first arrival vessel. Through the system of this paper, port security can be strengthened by improving the efficiency and system of port logistics by increasing the efficiency of port management personnel and reducing incidental costs caused by unauthorized entry.

  • PDF

Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm (딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석)

  • Jaewon Hur;Changhui Lee;Doochun Seo;Jaehong Oh;Changno Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.387-396
    • /
    • 2024
  • Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms,such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically,we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.

Research Analysis in Automatic Fake News Detection (자동화기반의 가짜 뉴스 탐지를 위한 연구 분석)

  • Jwa, Hee-Jung;Oh, Dong-Suk;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.15-21
    • /
    • 2019
  • Research in detecting fake information gained a lot of interest after the US presidential election in 2016. Information from unknown sources are produced in the shape of news, and its rapid spread is fueled by the interest of public drawn to stimulating and interesting issues. In addition, the wide use of mass communication platforms such as social network services makes this phenomenon worse. Poynter Institute created the International Fact Checking Network (IFCN) to provide guidelines for judging the facts of skilled professionals and releasing "Code of Ethics" for fact check agencies. However, this type of approach is costly because of the large number of experts required to test authenticity of each article. Therefore, research in automated fake news detection technology that can efficiently identify it is gaining more attention. In this paper, we investigate fake news detection systems and researches that are rapidly developing, mainly thanks to recent advances in deep learning technology. In addition, we also organize shared tasks and training corpus that are released in various forms, so that researchers can easily participate in this field, which deserves a lot of research effort.