• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,296, Processing Time 0.032 seconds

Implementation of facemask wearing identification and body temperature measurement system using deep learning (딥러닝 알고리즘을 활용한 마스크 착용 판별 및 체온 측정 시스템 구현)

  • Bang, Min-Ki;Kim, Do-Yeon;Choi, Da-Young;Lee, Jun-Beom;Jung, Young-Seok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.523-524
    • /
    • 2021
  • COVID-19 확산으로 인해 우리나라는 공공장소 출입 시 마스크 착용이 의무화되었고, 체온이 37.5℃ 이상일 경우 발열로 간주하여 출입을 금지함에 따라 이를 효율적으로 검사할 수 있는 자동화 시스템을 개발하고자 한다. 이를 위해 다양한 각도, 마스크의 착용 위치에 따른 자료를 수집하여 모델에 적용하였고, 실시간 영상은 96.5%의 높은 정확도를 보였고, 영상 처리 추론 속도는 28fps임을 확인했다. 본 논문은 딥러닝 알고리즘을 활용한 마스크 착용 판별 및 체온 측정 시스템을 제시한다.

  • PDF

Development of AI Systems for Counting Visitors and Check of Wearing Masks Using Deep Learning Algorithms (딥러닝 알고리즘을 활용한 출입자 통계와 마스크 착용 판별 인공지능 시스템)

  • Cho, Won-Young;Park, Sung-Leol;Kim, Hyun-Soo;Yun, Tae-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.285-286
    • /
    • 2020
  • 전 세계적으로 유행하는 COVID-19(코로나19)로 인해 사람들은 대면 접촉을 피하게 되었고, 전염성이 높은 이유로 마스크의 착용이 의무화되고 있고, 이를 검사하는 업무가 증가하고 있다. 그래서, 인공지능 기술을 통해 업무를 도와줄 수 있는 출입자 통계와 출입자 마스크 착용 검사를 할 수 있는 시스템이 필요하다. 이를 위해 본 논문에서는 딥러닝 알고리즘을 활용한 출입자 통계와 마스크 착용 판별 시스템을 제시한다. 또한, 실시간 영상인식에 많이 활용되고 있는 YOLO-v3와 YOLO-v4, YOLO-Tiny 알고리즘을 데스크탑 PC와 Nvidia사의 Jetson Nano에 적용하여 알고리즘별 성능 비교를 통해 적합한 방법을 찾고 적용하였다.

  • PDF

Cleaning robot system with deep learning-based sidewalk environment recognition and waste sorting technology (딥러닝 기반 보도(步道) 환경 인식 및 쓰레기 분류 기술을 탑재한 청소로봇 시스템)

  • Lee, Jong-Soo;Lim, Kyeong-Min;Lee, Young-Min;Lim, Jun-Oh;Yang, Woo-Sung
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.925-927
    • /
    • 2022
  • 본 논문에서는 자율주행을 통해 보도를 청소하는 동안 분실물을 인지할 수 있는 로봇 시스템을 개발하였다. 분실물의 종류는 딥러닝 모델에 의해 지정되고 학습되며 로봇은 이를 인식하여 저장한다. 보도 경계 및 장애물을 감지하기 위해 Image-Segmentation 기술을 사용하였으며, 물체 감지에 사용되는 depth 카메라(d435)를 사용하였다. 학습하기 위한 딥러닝 모델로 YOLOv5 를 사용하였으며, 그 결과 정해진 사물을 인식하는 데 평균 84%의 정확도를 보였다. 이 시스템을 로봇에 적용할 경우 예상되는 효과로는 정확한 보도 인식으로 로봇이 경로를 이탈하지 않도록 하는 것, 유실물품의 신속하고 안전한 인계 등이 있다.

A Real-time system for dataset generation based on Depp Learning (딥러닝 기반의 실시간 데이터셋 생성 시스템)

  • Jang, Hohyeok;Tak, Hyunjun;Lee, Sohee;Lee, Young-Sup
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.683-685
    • /
    • 2018
  • 본 논문은 도로에서의 객체탐지를 위한 딥러닝(deep learning) 데이터셋을 자동으로 생성, 분류하는 시스템을 제안한다. 시스템의 작동 과정은 크게 두 가지이다. 먼저 딥러닝을 활용하여 촬영된 영상에 존재하는 객체를 검출한다. 이때, 실시간으로 하는 방법과 레코딩된 영상을 다루는 방법 두 가지가 있다. 다음으로 검출된 객체 중 예측 값(scroe)가 임계치 이상인 객체의 위치와 종류를 파일로 저장한다. 이 시스템은 차량 전방 카메라 위치에 장착된 웹캠을 이용해 영상을 취득하고 임베디드 보드인 TX2 board를 이용해 데이터 셋을 생성한다. 매트랩의 image labeler app과 비교를 통해 보다 적은 시간비용으로 데이터셋을 생성해 냄을 확인하였다.

A Mobile System Development which has Function of Vietnam Hotel Recommendation based on Deep Learning (딥러닝 기반 베트남 호텔 맞춤 추천 모바일 시스템 개발)

  • Oh, Jong-Hyun;Seo, Young-Soo;Kang, Hyun-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.408-413
    • /
    • 2020
  • 본 논문은 아고다 사이트의 호텔 정보를 크롤링하여 사용자의 선호 호텔을 구글에서 제공하는 Tensorflow로 인공신경망 딥러닝 학습하여 사용자가 선호하는 호텔을 맞춤 추천하는 애플리케이션의 설계 및 구현에 대하여 서술한다. 본 애플리케이션은 해외(베트남) 호텔을 취향에 맞게 추천받을 수 있도록 만들어진 애플리케이션으로 기존의 필터링 방식으로 추천하는 방식의 애플리케이션들과 달리 사용자의 취향을 딥러닝 학습을 통해 파악하고 최적의 호텔 정보를 추천하는 기능을 제공한다. 본 애플리케이션에 사용된 선호 호텔 예측 모델은 약 84%의 정확도를 보이며 추천 별점으로 표시되어 사용자가 각 호텔에 대해 얼마만큼 선호도를 갖는지 알 수 있다.

  • PDF

Research on the Development of Automatic Damage Analysis System for Railway Bridges using Deep Learning Analysis Technology Based on Unmanned Aerial Vehicle (무인이동체 기반 딥러닝 분석 기술을 활용한 철도교량 자동 손상 분석 기술 개발 연구)

  • Na, Yong-Hyoun;Park, Mi-Yeon
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.347-348
    • /
    • 2022
  • 본 연구에서는 무인이동체를 활용한 철도교량의 외관조사 점검을 보다 효율적이고 객관성 있게 수행하기 위하여 무인이동체를 통해 촬영된 이미지를 딥러닝 기반 분석기술을 활용하여 손상 자동으로 분석 하기위한 기술을 연구하였다. 철도교량의 외관 손상 중 균열, 콘크리트 박리·박락, 누수, 철근노출에 대한 손상 이미지를 추출하여 딥러닝 분석 모델을 생성하고 학습한 분석 모델을 적용한 시스템을 실제 현장에 적용 테스트를 수행하였으며 학습 구현된 분석모델의 검측 재현율을 검토한 결과 평균 95%이상의 감지성능을 검토할 수 있었다. 개발 제안된 자동손상분석 기술은 기존 육안점검 결과 대비 보다 객관적이고 정밀한 손상 검측이 가능하며 철도 유지관리 분야에서 무인이동체를 활용한 외관조사 업무를 수행함에 있어 기존 대비 객관적인 결과도출과 소요시간, 비용저감이 가능할 것으로 기대된다.

  • PDF

An Efficient Dynamic Workload Balancing Strategy (DNN을 이용한 중환자 상태 징후 조기 예측)

  • Hyun-Suk Yoon;Gil-Sik Park;Hae-Jong Joo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.325-327
    • /
    • 2024
  • 국내외에서 AI기반 의료 솔루션 시장은 빠른 속도로 확장 중이며 이에 따른 다양한 의학 분야에서 많은 기법을 통한 의료 AI 시스템이 등장하고 있다. 그러나 기존 다양한 AI 연구가 이뤄짐에도 아직 중환자의 징후 예측에는 많은 어려움이 있다. 또한, 중환자의 경우 현재 의료진만으로 모든 환자를 필요한 시기에 진료하기엔 어려움이 있고 환자 상태 조기 예측이 필수적임을 관련 다양한 의학 기사를 통해 쉽게 인지할 수 있다. 본 연구에서는 위와 같은 문제점을 해결하고자 중환자의 진료 결과 데이터를 활용하여 환자의 진료 후 상태를 예측하는 모델을 생성하였다. '용인시산업진흥원'에서 제공하는 60만여 건에 달하는 환자 데이터를 수집하여, 중환자 상태 징후를 조기에 예측할 수 있는 머신러닝/딥러닝 기반 알고리즘으로 구현한 여러 모델에 대해 비교했을 때 딥러닝(DNN) 기반 모델이 약 92%의 분류 정확도를 측정할 수 있었다.

  • PDF

De-noising in Power Line Communication Using Noise Modeling Based on Deep Learning (딥 러닝 기반의 잡음 모델링을 이용한 전력선 통신에서의 잡음 제거)

  • Sun, Young-Ghyu;Hwang, Yu-Min;Sim, Issac;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • This paper shows the initial results of a study applying deep learning technology in power line communication. In this paper, we propose a system that effectively removes noise by applying a deep learning technique to eliminate noise, which is a cause of reduced power line communication performance, by adding a deep learning model at the receive part. To train the deep learning model, it is necessary to store the data. Therefore, it is assumed that the existing data is stored, and the proposed system is simulated. we compare the theoretical result of the additive white Gaussian noise channel with the bit error rate and confirm that the proposed system model improves the communication performance by removing the noise.

Deep Learning Based Error Control in Electric Vehicle Charging Systems Using Power Line Communication (전력선 통신을 이용한 전기자동차 충전 시스템에서 딥 러닝 기반 오류제어)

  • Sun, Young Ghyu;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.150-158
    • /
    • 2018
  • In this paper, we introduce an electric vehicle charging system using power line communication and propose a method to correct the error by applying a deep learning algorithm when an error occurs in the control signal of an electric vehicle charging system using power line communication. The error detection and correction of the control signal can be solved through the conventional error correcting code schemes, but the error is detected and corrected more efficiently by using the deep learning based error correcting code scheme. Therefore, we introduce deep learning based error correction code scheme and apply this scheme to electric vehicle charging system using power line communication. we proceed simulation and confirm performance with bit error rate. we judge whether the deep learning based error correction code scheme is more effective than the conventional schemes.

Study of Target Pose Estimation System: Distance Measurement Based Deep Learning Using Single Camera (딥러닝 단일카메라 거리 측정 기술 활용 구조대상자 위치추정시스템 연구)

  • Do-Yun Kim;Jong-In Choi ;Seo-Won Park ;Kwang-Young Park
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.560-561
    • /
    • 2023
  • 지진, 대형화재와 같은 많은 재해의 발생으로 인해 재난 안전 분야에 관심이 증가하고 있으며, 재난재해 시 신속하고 안전한 구조는 생존율에 영향을 준다. 기존 연구에서는 다양한 센서와 멀티카메라를 이용한 위치 추정 연구는 있으나, 가장 많이 설치된 단일카메라 기반의 위치 추정연구는 부족한 상태이다. 본 논문에서 단일카메라를 활용한 딥러닝 객체탐지와 거리측정 알고리즘을 이용하여 인명구조를 위한 구조대상자 위치추정시스템을 제안한다. 딥러닝을 활용한 객체탐지 기술을 이용하여 단일카메라 영상 내 객체와 해상도에 따른 바운딩 박스의 너비를 활용한 거리 계산식으로 거리를 추정하고, 객체의 위치좌표를 제공하여 신속한 재난 구조에 도움이 되는 시스템을 제안한다.