Annual Conference on Human and Language Technology
/
2015.10a
/
pp.99-103
/
2015
최근 딥러닝 기술의 발전에 힘입어 이미지로부터 자동으로 관련된 단어 혹은 문장을 생성하는 연구들이 진행되고 있는데, 많은 연구들은 이미지와 단어가 1:1로 대응된 잘 정련된 학습 집합을 필요로 한다. 한편 스마트폰 보급의 확산으로 인스타그램, 폴라 등의 이미지 기반 SNS가 급속하게 성장함에 따라 인터넷에는 한 이미지의 복수개의 단어(태그)가 부착되어있는 데이터들이 폭증하고 있는 것이 현실이다. 본 논문에서는 소규모의 잘 정련된 학습 집합뿐 아니라 이러한 대규모의 다중 레이블 데이터를 같이 활용하여 이미지로부터 태그를 생성하는 개선된 CNN구조 및 학습알고리즘을 제안한다. 기존의 분류 기반 모델에 은닉층을 추가하고 새로운 학습 방법을 도입한 결과, 어노테이션 성능이 기존 모델보다 11% 이상 향상되었다.
Park, Seong-Hyeon;Ku, Chang-Mo;Park, Gun-Woo;Park, Nam-Seok;Cho, Jung-hwi
Annual Conference of KIPS
/
2019.10a
/
pp.928-930
/
2019
방송에서는 당사자의 동의 없이 얼굴을 노출 시키거나, 유해물질로 판단되는 물체의 노출을 금지하고 있다. 기존의 처리방식으로 편집자가 촬영된 영상을 직접 편집하거나, 촬영 시 가리개를 이용하는 방법을 사용한다. 이러한 방법은 번거롭고, 실수로 인해 얼굴이나 유해물질이 방송에 그대로 노출될 수 있다. 본 논문에서는 딥러닝 기반의 객체탐지 모델과 동일인 판단 모델을 사용하여 편집 과정을 자동으로 처리하고 후처리뿐만 아니라 실시간 방송에서의 적용을 위해 추가적으로 객체추적 알고리즘을 도입하여 처리속도를 높이는 방안을 제시한다.
인터넷 기술의 발전에 힘입은 전자상거래의 급격한 발전에 따라 소비자들의 소비습관은 오프라인에서 온라인으로 빠르게 바뀌었다. 이에 따라, 구매한 상품에 대한 평가를 작성하는 것 또한 만연해지면서 소비자들에게 구매 결정의 중요한 요인으로 작용하기 시작하였고 실제 판매량에도 직접적인 영항을 끼치기 시작하였다. 그러나, 현재 전자상거래 시스템에서는 상품에 대한 평가를 한눈에 알아볼 수 있는 기능이 부재하고 있어 소비자의 소비 전략과 판매 전략측면에서의 비효율을 야기하고 있다. 따라서, 본 논문에서는 LSTM 을 기반으로 한 딥러닝 모델을 이용해 감정분석을 하여 온라인 상품평을 긍정/부정에 따라 자동으로 분류하고자 한다. 이를 통해, 효율적인 반응 분석을 위한 기술 개발의 기반을 마련하여 소비자와 판매자 모두에게 더 나아진 전략 수립의 기회를 제공할 것으로 기대한다.
Most of the initial forms of cooperative robots were intended to repeat simple tasks in a given space. So, they showed no significant difference from industrial robots. However, research for improving worker's productivity and supplementing human's limited working hours is expanding. Also, there have been active attempts to use it as a service robot by applying AI technology. In line with these social changes, we produced a mobile manipulator that can improve the worker's efficiency and completely replace one person. First, we combined cooperative robot with mobile robot. Second, we applied speech recognition technology and deep learning based object detection. Finally, we integrated all the systems by ROS (robot operating system). This system can communicate with workers by voice and drive autonomously and perform the Pick & Place task.
Journal of Korea Society of Digital Industry and Information Management
/
v.17
no.4
/
pp.85-94
/
2021
The LPR system's trigger sensor makes problem occasionally due to the heave weight of vehicle or the obsolescence equipment. If we replace the hardware sensor to the deep-learning based software sensor in order to generate the trigger signal, LPR system maintenance would be a lot easier. In this paper we proposed the deep-learning sliding window based object detection and tracking algorithm for the LPR system's trigger signal generation. The gate passing vehicle's license plate recognition results are combined into the normal tracking algorithm to catch the position of the vehicle on the trigger line. The experimental results show that the deep learning sliding window based trigger signal generating performance was 100% for the gate passing vehicles including the 5.5% trigger signal position errors due to the minimum bounding box location errors in the vehicle detection process.
Lane detection is important technology for implementing ADAS or autonomous driving. Although edge detection has been typically used for the lane detection however, false detections occur frequently. To improve this problem, a deep learning based lane detection algorithm is proposed in this paper. This algorithm is mounted on an ARM-based embedded system to implement a LDW(lane departure warning). Since the embedded environment lacks computing power, the VGG-11, a lightweight model based on VGG-13, has been proposed. In order to evaluate the performance of the LDW, the test was conducted according to the test scenario of NHTSA.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.234-235
/
2019
본 논문은 실사 객체를 360도 전방위에서 관찰이 가능한 3D 그래픽 모델로 변환하는 시스템에서 뼈대를 추출하는 방법을 제시한다. 각 카메라로부터 촬영된 텍스쳐 영상을 이용하여 뼈대를 추출하고, 깊이 정보로부터 얻어진 포인트 클라우드 정보를 이용하여 뼈대 정보를 정합, 보정하는 과정을 수행한다. 카메라로부터 촬영된 텍스쳐 영상에 대해 딥러닝 기술 등을 이용하여 뼈대를 획득한다. 텍스쳐 영상으로부터 획득된 뼈대 정보는 동일 위치에서 획득된 외부 파라미터를 이용하여 월드좌표계로 변환하여 공간상에 위치시킨다. 이러한 과정을 모든 카메라로부터 획득된 뼈대 정보에 동일하게 적용함으로써 모든 뼈대 정보를 공간상에 표현하여 최종적인 뼈대 정보를 추출하는 방법을 제시한다.
Kim, Geonuk;Sin, Jaeyong;Hwang, Gisu;Huh, Yoojin;Oh, Seoung-Jun
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.120-122
/
2018
이미지에서 단순히 객체탐지를 하는 것이 아닌, 맥락정보를 탐지하는 해내는 것은 이미지 분석 분야에서 활발히 진행해온 연구분야 중 하나이다. 본 논문은 검출된 객체와 사람 간의 맥락 정보를 실시간으로 검출하기 위해 관심있는 객체와 인체의 키포인트를 탐지한 후, 그 두 영역 사이의 거리정보를 이용하여 맥락정보를 추출하는 알고리즘을 제안한다. 이는 CNN으로 이루어진 단일 구조 방식이기에 낮은 시스템 복잡도를 갖는다. 이 방법을 통하여 사람과 연관된 객체 사이의 맥락 정보와 그 위치정보를 출력함으로써 CCTV내 무장한 테러범의 위치나 축구 경기 내 공을 소유한 선수를 찾는 경우 등의 실질적인 이미지 분석에 활용할 수 있다.
As the world's population grows, the food industry becomes increasingly important. Among them, agriculture is an industry that produces stocks of people all over the world, which is very important food industry. Despite the growing importance of agriculture, however, a large number of crops are lost every year due to pests and malnutrition. So, we propose a plant anomaly detection system for managing crops incorporating deep learning and drones with various possibilities. In this paper, we develop a system that analyzes images taken by drones and GPS of the drone's movement path and visually displays them on a map. Our system detects plant anomalies with 97% accuracy. The system is expected to enable efficient crop management at low cost.
Modern computer systems usually have special hardware for operations used in deep learning workload even edge computing environment. Non-volatile memories (NVMs) have been considered for alternative memory storage because they consume little static energy and occupy small area. However, there is a problem for NVMs to be directly adopted. An NVM cell has limited write endurance, so that the lifetime of NVM-based memory system is much shorter than that of conventional memory system. To overcome this problem for the deep learning system, this paper proposes a novel method to extend the lifetime based on the analysis of the deep learning workloads. If an incoming block has more than a predefined number of frequently used values, the cacheline is defined as write friendly block. During the victim selection, the cacheline has lower possibility to be chosen as victim. The experimental results show that the lifetime is increased by about 50% and energy consumption is decreased by 3% with a little performance hurt.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.