• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.035 seconds

Research cases and considerations in the field of hydrosystems using ChatGPT (ChatGPT를 활용한 수자원시스템분야 문제해결사례 소개 및 고찰)

  • Do Guen Yoo;Chan Wook Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.98-98
    • /
    • 2023
  • ChatGPT(Chat과 Generative Pre-trained Transformer의 합성어)는 사용자와 주고받는 대화의 과정을 통해 질문에 답하도록 설계된 대형언어모델로, 지도학습과 강화학습을 모두 사용하여 세밀하게 조정된 인공지능 챗봇이다. ChatGPT는 주고받은 대화와 대화의 문맥을 기억할 수 있으며, 보고서나 실제로 작동하는 파이썬 코드를 비롯한 인간과 유사하게 상세하고 논리적인 글을 만들어 낼 수 있다고 알려져있다. 본 연구에서는 수자원시스템분야의 문제해결에 있어 ChatGPT의 적용가능성을 사례기반으로 확인하고, ChatGPT의 올바른 활용을 위해 필요한 사항에 대해 고찰하였다. 수자원시스템분야의 대표적인 연구주제인 상수관망시스템의 누수인지와 수리해석을 통한 문제해결에 ChatGPT를 활용하였다. 즉, 딥러닝 기반의 데이터분석을 활용한 누수인지와 오픈소스기반의 수리해석 모델을 활용한 관망시스템 적정 분석을 목표로 ChatGPT와 대화를 진행하고, ChatGPT에 의해 제안된 코드를 구동하여 결과를 분석하였다. ChatGPT가 제시한 코드의 구동결과를 사전에 연구자가 직접 구현한 코드구동 결과와 비교분석하였다. 분석결과 ChatGPT가 제시한 코드가 보다 더 간결할 수 있으며, 상대적으로 경쟁력 있는 결과를 도출하는 것을 확인하였다. 다만, 상대적으로 간결한 코드와 우수한 구동결과를 획득하기 위해서는 해당 도메인의 전문적 지식을 바탕으로 적절한 다수의 질문을 해야 하며, ChatGPT에 의해 작성된 코드의 의미를 명확히 해석하거나 비판적 분석을 하기 위해서는 전문가지식이 반드시 필요함을 알 수 있었다.

  • PDF

Deep Learning-based Abnormal Behavior Detection System for Dementia Patients (치매 환자를 위한 딥러닝 기반 이상 행동 탐지 시스템)

  • Kim, Kookjin;Lee, Seungjin;Kim, Sungjoong;Kim, Jaegeun;Shin, Dongil;shin, Dong-kyoo
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.133-144
    • /
    • 2020
  • The number of elderly people with dementia is increasing as fast as the proportion of older people due to aging, which creates a social and economic burden. In particular, dementia care costs, including indirect costs such as increased care costs due to lost caregiver hours and caregivers, have grown exponentially over the years. In order to reduce these costs, it is urgent to introduce a management system to care for dementia patients. Therefore, this study proposes a sensor-based abnormal behavior detection system to manage dementia patients who live alone or in an environment where they cannot always take care of dementia patients. Existing studies were merely evaluating behavior or evaluating normal behavior, and there were studies that perceived behavior by processing images, not data from sensors. In this study, we recognized the limitation of real data collection and used both the auto-encoder, the unsupervised learning model, and the LSTM, the supervised learning model. Autoencoder, an unsupervised learning model, trained normal behavioral data to learn patterns for normal behavior, and LSTM further refined classification by learning behaviors that could be perceived by sensors. The test results show that each model has about 96% and 98% accuracy and is designed to pass the LSTM model when the autoencoder outlier has more than 3%. The system is expected to effectively manage the elderly and dementia patients who live alone and reduce the cost of caring.

Tomato Crop Diseases Classification Models Using Deep CNN-based Architectures (심층 CNN 기반 구조를 이용한 토마토 작물 병해충 분류 모델)

  • Kim, Sam-Keun;Ahn, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.7-14
    • /
    • 2021
  • Tomato crops are highly affected by tomato diseases, and if not prevented, a disease can cause severe losses for the agricultural economy. Therefore, there is a need for a system that quickly and accurately diagnoses various tomato diseases. In this paper, we propose a system that classifies nine diseases as well as healthy tomato plants by applying various pretrained deep learning-based CNN models trained on an ImageNet dataset. The tomato leaf image dataset obtained from PlantVillage is provided as input to ResNet, Xception, and DenseNet, which have deep learning-based CNN architectures. The proposed models were constructed by adding a top-level classifier to the basic CNN model, and they were trained by applying a 5-fold cross-validation strategy. All three of the proposed models were trained in two stages: transfer learning (which freezes the layers of the basic CNN model and then trains only the top-level classifiers), and fine-tuned learning (which sets the learning rate to a very small number and trains after unfreezing basic CNN layers). SGD, RMSprop, and Adam were applied as optimization algorithms. The experimental results show that the DenseNet CNN model to which the RMSprop algorithm was applied output the best results, with 98.63% accuracy.

Enhanced Sound Signal Based Sound-Event Classification (향상된 음향 신호 기반의 음향 이벤트 분류)

  • Choi, Yongju;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.5
    • /
    • pp.193-204
    • /
    • 2019
  • The explosion of data due to the improvement of sensor technology and computing performance has become the basis for analyzing the situation in the industrial fields, and various attempts to detect events based on such data are increasing recently. In particular, sound signals collected from sensors are used as important information to classify events in various application fields as an advantage of efficiently collecting field information at a relatively low cost. However, the performance of sound-event classification in the field cannot be guaranteed if noise can not be removed. That is, in order to implement a system that can be practically applied, robust performance should be guaranteed even in various noise conditions. In this study, we propose a system that can classify the sound event after generating the enhanced sound signal based on the deep learning algorithm. Especially, to remove noise from the sound signal itself, the enhanced sound data against the noise is generated using SEGAN applied to the GAN with a VAE technique. Then, an end-to-end based sound-event classification system is designed to classify the sound events using the enhanced sound signal as input data of CNN structure without a data conversion process. The performance of the proposed method was verified experimentally using sound data obtained from the industrial field, and the f1 score of 99.29% (railway industry) and 97.80% (livestock industry) was confirmed.

Development of Real-time Video Search System Using the Intelligent Object Recognition Technology (지능형 객체 인식 기술을 이용한 실시간 동영상 검색시스템)

  • Chang, Jae-Young;Kang, Chan-Hyeok;Yoon, Jae-Min;Cho, Jae-Won;Jung, Ji-Sung;Chun, Jonghoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.85-91
    • /
    • 2020
  • Recently, video-taping equipment such as CCTV have been seeing more use for crime prevention and general safety concerns. Since these video-taping equipment operates all throughout the day, the need for security personnel is lessened, and naturally costs incurred from managing such manpower should also decrease. However, technology currently used predominantly lacks self-sufficiency when given the task of searching for a specific object in the recorded video such as a person, and has to be done manually; current security-based video equipment is insufficient in an environment where real-time information retrieval is required. In this paper, we propose a technology that uses the latest deep-learning technology and OpenCV library to quickly search for a specific person in a video; the search is based on the clothing information that is inputted by the user and transmits the result in real time. We implemented our system to automatically recognize specific human objects in real time by using the YOLO library, whilst deep learning technology is used to classify human clothes into top/bottom clothes. Colors are also detected through the OpenCV library which are then all combined to identify the requested object. The system presented in this paper not only accurately and quickly recognizes a person object with a specific clothing, but also has a potential extensibility that can be used for other types of object recognition in a video surveillance system for various purposes.

A Study on the Design and Implementation of a Thermal Imaging Temperature Screening System for Monitoring the Risk of Infectious Diseases in Enclosed Indoor Spaces (밀폐공간 내 감염병 위험도 모니터링을 위한 열화상 온도 스크리닝 시스템 설계 및 구현에 대한 연구)

  • Jae-Young, Jung;You-Jin, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Respiratory infections such as COVID-19 mainly occur within enclosed spaces. The presence or absence of abnormal symptoms of respiratory infectious diseases is judged through initial symptoms such as fever, cough, sneezing and difficulty breathing, and constant monitoring of these early symptoms is required. In this paper, image matching correction was performed for the RGB camera module and the thermal imaging camera module, and the temperature of the thermal imaging camera module for the measurement environment was calibrated using a blackbody. To detection the target recommended by the standard, a deep learning-based object recognition algorithm and the inner canthus recognition model were developed, and the model accuracy was derived by applying a dataset of 100 experimenters. Also, the error according to the measured distance was corrected through the object distance measurement using the Lidar module and the linear regression correction module. To measure the performance of the proposed model, an experimental environment consisting of a motor stage, an infrared thermography temperature screening system and a blackbody was established, and the error accuracy within 0.28℃ was shown as a result of temperature measurement according to a variable distance between 1m and 3.5 m.

Design and implementation of a satisfaction and category classifier for game reviews based on deep learning (딥러닝 기반 게임 리뷰 만족도 및 카테고리 분류 시스템 설계 및 개발)

  • Yang, Yu-Jeong;Lee, Bo-Hyun;Kim, Jin-Sil;Lee, Ki Yong
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.729-732
    • /
    • 2018
  • 모바일 게임 산업의 발달로 많은 사용자들이 게임을 이용하면서, 그들의 만족감을 사용리뷰를 통해 드러낸다. 실제로 각 리뷰의 범주가 모두 다르지만 현재 구글 플레이 앱스토어(Google Play App Store)의 게임 리뷰 범주는 3가지로 매우 제한적이다. 따라서 본 연구에서는 빠르고 정확한 고객의 요구를 필요로 하는 게임 소프트웨어의 특성을 고려하여 게임 리뷰를 입력했을 때, 게임의 운영 및 시스템에 맞도록 리뷰의 카테고리를 세분화하고 만족도를 분석하는 시스템을 개발한다. 제안 시스템은 인공신경망 모델인 CNN을 평점을 기반으로 훈련시켜 리뷰에 대한 만족도를 도출한다. 또한 Word2Vec을 이용해 단어들 간의 유사도를 구하고, 이를 활용한 단어 배열을 이용하여 가장 스코어가 높은 카테고리로 배정한다. 본 논문은 제안한 리뷰 만족도 및 카테고리 분류 시스템이 실제 효과적으로 리뷰를 보다 의미 있는 정보로써 제공할 수 있음을 보인다.

Smart Railway Communication Standardization Trend and Direction (스마트 철도 통신 표준화 동향과 지향점)

  • Kim, Jong-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.207-212
    • /
    • 2022
  • The rail transport system is developing into a smart railroad that pursues intelligence beyond the automation stage of each component in recent years. Smart railways based on ICT (: Information & Communications Technology) technologies such as IoT (: Internet of Things), big data, deep learning, AI (: Artificial Intelligence), and block chain are expected to cause many developmental changes in domestic and foreign railway technologies. In this paper, we look at the domestic and international standardization trends of railway communication technology, which forms the basis of such smart railway system, and discuss the direction for train control technology(CBTC) in Korea's railway transportation system to become a leading technology(UBTC) in the world railway industry in the future.

Smart Target Detection System Using Artificial Intelligence (인공지능을 이용한 스마트 표적탐지 시스템)

  • Lee, Sung-nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.538-540
    • /
    • 2021
  • In this paper, we proposed a smart target detection system that detects and recognizes a designated target to provide relative motion information when performing a target detection mission of a drone. The proposed system focused on developing an algorithm that can secure adequate accuracy (i.e. mAP, IoU) and high real-time at the same time. The proposed system showed an accuracy of close to 1.0 after 100k learning of the Google Inception V2 deep learning model, and the inference speed was about 60-80[Hz] when using a high-performance laptop based on the real-time performance Nvidia GTX 2070 Max-Q. The proposed smart target detection system will be operated like a drone and will be helpful in successfully performing surveillance and reconnaissance missions by automatically recognizing the target using computer image processing and following the target.

  • PDF

Deep Learning Model for Metaverse Environment to Detect Metaphor (메타버스 환경에서 음성 혐오 발언 탐지를 위한 딥러닝 모델 설계)

  • Song, Jin-Su;Karabaeva, Dilnoza;Son, Seung-Woo;Shin, Young-Tea
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.621-623
    • /
    • 2022
  • 최근 코로나19로 인해 비대면으로 소통할 수 있는 플랫폼에 대한 관심이 증가하고 있으며, 가상 세계의 개념을 도입한 메타버스 플랫폼이 MZ세대의 새로운 SNS로 떠오르고 있다. 아바타를 통해 상호 교류가 가능한 메타버스는 텍스트 기반의 소통뿐만 아니라 음성과 동작 시선 등을 활용하여 변화된 의사소통 방식을 사용한다. 음성을 활용한 소통이 증가함에 따라 다른 이용자에게 불쾌감을 주는 혐오 발언에 대한 신고가 증가하고 있다. 그러나 기존 혐오 발언 탐지 시스템은 텍스트를 기반으로 하여 사전에 정의된 혐오 키워드만 특수문자로 대체하는 방식을 사용하기 때문에 음성 혐오 발언에 대해서는 탐지하지 못한다. 이에 본 논문에서는 인공지능을 활용한 음성 혐오 표현 탐지 시스템을 제안한다. 제안하는 시스템은 음성 데이터의 파형을 통해 은유적 혐오 표현과 혐오 발언에 대한 감정적 특징을 추출하고 음성 데이터를 텍스트 데이터로 변환하여 혐오 문장을 탐지한 결과와 결합한다. 향후, 제안하는 시스템의 현실적인 검증을 위해 시스템 구축을 통한 성능평가가 필요하다.