• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.036 seconds

A Study on Image Classification using Deep Learning-Based Transfer Learning (딥 러닝 기반의 전이 학습을 이용한 이미지 분류에 관한 연구)

  • Jung-Hee Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.413-420
    • /
    • 2023
  • For a long time, researchers have presented excellent results in the field of image retrieval due to many studies on CBIR. However, there is still a semantic gap between these search results for images and human perception. It is still a difficult problem to classify images with a level of human perception using a small number of images. Therefore, this paper proposes an image classification model using deep learning-based transfer learning to minimize the semantic gap between images of people and search systems in image retrieval. As a result of the experiment, the loss rate of the learning model was 0.2451% and the accuracy was 0.8922%. The implementation of the proposed image classification method was able to achieve the desired goal. And in deep learning, it was confirmed that the CNN's transfer learning model method was effective in creating an image database by adding new data.

A Study on the Engine Sound Classification System Based on Deep Learning (딥러닝을 이용한 엔진음 분류 시스템에 대한 연구)

  • Jin Heo;Jaemyoung Lee
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.557-558
    • /
    • 2024
  • 엔진을 정확하게 분류하는 것은 엔진의 수리 및 유지보수에 있어 중요한 과제 중 하나이다. 하지만 청음훈련을 통해 이를 숙달하는데는 오랜 시간이 걸리고, 엔지니어의 주관적 요인에 큰 영향을 받는다. 이를 해결하기 위해, 엔진의 음향적 특성을 이용한 머신러닝을 통해 엔진을 구분하는 시스템을 제안한다.

Performance Analysis of Optical Camera Communication with Applied Convolutional Neural Network (합성곱 신경망을 적용한 Optical Camera Communication 시스템 성능 분석)

  • Jong-In Kim;Hyun-Sun Park;Jung-Hyun Kim
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.49-59
    • /
    • 2023
  • Optical Camera Communication (OCC), known as the next-generation wireless communication technology, is currently under extensive research. The performance of OCC technology is affected by the communication environment, and various strategies are being studied to improve it. Among them, the most prominent method is applying convolutional neural networks (CNN) to the receiver of OCC using deep learning technology. However, in most studies, CNN is simply used to detect the transmitter. In this paper, we experiment with applying the convolutional neural network not only for transmitter detection but also for the Rx demodulation system. We hypothesize that, since the data images of the OCC system are relatively simple to classify compared to other image datasets, high accuracy results will appear in most CNN models. To prove this hypothesis, we designed and implemented an OCC system to collect data and applied it to 12 different CNN models for experimentation. The experimental results showed that not only high-performance CNN models with many parameters but also lightweight CNN models achieved an accuracy of over 99%. Through this, we confirmed the feasibility of applying the OCC system in real-time on mobile devices such as smartphones.

S-FDS : a Smart Fire Detection System based on the Integration of Fuzzy Logic and Deep Learning (S-FDS : 퍼지로직과 딥러닝 통합 기반의 스마트 화재감지 시스템)

  • Jang, Jun-Yeong;Lee, Kang-Woon;Kim, Young-Jin;Kim, Won-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.50-58
    • /
    • 2017
  • Recently, some methods of converging heterogeneous fire sensor data have been proposed for effective fire detection, but the rule-based methods have low adaptability and accuracy, and the fuzzy inference methods suffer from detection speed and accuracy by lack of consideration for images. In addition, a few image-based deep learning methods were researched, but it was too difficult to rapidly recognize the fire event in absence of cameras or out of scope of a camera in practical situations. In this paper, we propose a novel fire detection system combining a deep learning algorithm based on CNN and fuzzy inference engine based on heterogeneous fire sensor data including temperature, humidity, gas, and smoke density. we show it is possible for the proposed system to rapidly detect fire by utilizing images and to decide fire in a reliable way by utilizing multi-sensor data. Also, we apply distributed computing architecture to fire detection algorithm in order to avoid concentration of computing power on a server and to enhance scalability as a result. Finally, we prove the performance of the system through two experiments by means of NIST's fire dynamics simulator in both cases of an explosively spreading fire and a gradually growing fire.

Design and Implementation of Visitor Access Control System using Deep learning Face Recognition (딥러닝 얼굴인식 기술을 활용한 방문자 출입관리 시스템 설계와 구현)

  • Heo, Seok-Yeol;Kim, Kang Min;Lee, Wan-Jik
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.245-251
    • /
    • 2021
  • As the trend of steadily increasing the number of single or double household, there is a growing demand to see who is the outsider visiting the home during the free time. Various models of face recognition technology have been proposed through many studies, and Harr Cascade of OpenCV and Hog of Dlib are representative open source models. Among the two modes, Dlib's Hog has strengths in front of the indoor and at a limited distance, which is the focus of this study. In this paper, a face recognition visitor access system based on Dlib was designed and implemented. The whole system consists of a front module, a server module, and a mobile module, and in detail, it includes face registration, face recognition, real-time visitor verification and remote control, and video storage functions. The Precision, Specificity, and Accuracy according to the change of the distance threshold value were calculated using the error matrix with the photos published on the Internet, and compared with the results of previous studies. As a result of the experiment, it was confirmed that the implemented system was operating normally, and the result was confirmed to be similar to that reported by Dlib.

Comparison of Semantic Segmentation Performance of U-Net according to the Ratio of Small Objects for Nuclear Activity Monitoring (핵활동 모니터링을 위한 소형객체 비율에 따른 U-Net의 의미론적 분할 성능 비교)

  • Lee, Jinmin;Kim, Taeheon;Lee, Changhui;Lee, Hyunjin;Song, Ahram;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1925-1934
    • /
    • 2022
  • Monitoring nuclear activity for inaccessible areas using remote sensing technology is essential for nuclear non-proliferation. In recent years, deep learning has been actively used to detect nuclear-activity-related small objects. However, high-resolution satellite imagery containing small objects can result in class imbalance. As a result, there is a performance degradation problem in detecting small objects. Therefore, this study aims to improve detection accuracy by analyzing the effect of the ratio of small objects related to nuclear activity in the input data for the performance of the deep learning model. To this end, six case datasets with different ratios of small object pixels were generated and a U-Net model was trained for each case. Following that, each trained model was evaluated quantitatively and qualitatively using a test dataset containing various types of small object classes. The results of this study confirm that when the ratio of object pixels in the input image is adjusted, small objects related to nuclear activity can be detected efficiently. This study suggests that the performance of deep learning can be improved by adjusting the object pixel ratio of input data in the training dataset.

Development of Special Documents Classification System using Deep Learning (딥러닝을 이용한 전문분야 문서 분류 시스템 개발)

  • Jin, Sang-Hyeon;Hwang, Sang-Ho;Kang, Won-Seok;Son, Chang-Sik
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.589-591
    • /
    • 2019
  • 본 논문에서는 고도장비의 운용 및 정비를 위한 교육훈련 시스템 개발을 위해 자연어 처리와 딥러닝 기술을 이용하여 항공정비와 관련된 전문분야의 문서 분류가 가능한 방법을 제안하고자 한다. 문서 분류 모델의 개발을 위해 항공정비 교범을 텍스트 파일로 변환하여 총 4917개의 문서를 생성하였으며, 정비사 개인별 정비능력 관리(IMQC)를 기준으로 12개의 범주로 구분하였다. 수집된 문서는 전문분야의 문서인 점을 고려하여 전문용어 사전을 추가하였으며, KoNLPy를 이용하여 전처리를 수행하였다. 전문분야의 문서는 범주에 상관없이 문서 내용의 유사도가 매우 높은 특징을 가지고 있어, 특정 범주내에서 중요한 정도를 잘 표현 할 수 있는 TF-ICF를 이용하여 특징 추출을 하였다. 이후 합성곱 신경망(CNN)을 이용하여 특징 맵을 생성한 후 완전 결합 계층을 통하여 분류하였으며, 테스트 문서 983건을 분류한 결과 평균 73.6%의 분류성능을 보여주었다.

Deep Learning Approaches to RUL Prediction of Lithium-ion Batteries (딥러닝을 이용한 리튬이온 배터리 잔여 유효수명 예측)

  • Jung, Sang-Jin;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.21-27
    • /
    • 2020
  • Lithium-ion batteries are the heart of energy-storing devices and electric vehicles. Owing to their superior qualities, such as high capacity and energy efficiency, they have become quite popular, resulting in an increased demand for failure/damage prevention and useable life maximization. To prevent failure in Lithium-ion batteries, improve their reliability, and ensure productivity, prognosticative measures such as condition monitoring through sensors, condition assessment for failure detection, and remaining useful life prediction through data-driven prognostics and health management approaches have become important topics for research. In this study, the residual useful life of Lithium-ion batteries was predicted using two efficient artificial recurrent neural networks-ong short-term memory (LSTM) and gated recurrent unit (GRU). The proposed approaches were compared for prognostics accuracy and cost-efficiency. It was determined that LSTM showed slightly higher accuracy, whereas GRUs have a computational advantage.

Design of Deep Learning-Based Automatic Drone Landing Technique Using Google Maps API (구글 맵 API를 이용한 딥러닝 기반의 드론 자동 착륙 기법 설계)

  • Lee, Ji-Eun;Mun, Hyung-Jin
    • Journal of Industrial Convergence
    • /
    • v.18 no.1
    • /
    • pp.79-85
    • /
    • 2020
  • Recently, the RPAS(Remote Piloted Aircraft System), by remote control and autonomous navigation, has been increasing in interest and utilization in various industries and public organizations along with delivery drones, fire drones, ambulances, agricultural drones, and others. The problems of the stability of unmanned drones, which can be self-controlled, are also the biggest challenge to be solved along the development of the drone industry. drones should be able to fly in the specified path the autonomous flight control system sets, and perform automatically an accurate landing at the destination. This study proposes a technique to check arrival by landing point images and control landing at the correct point, compensating for errors in location data of the drone sensors and GPS. Receiving from the Google Map API and learning from the destination video, taking images of the landing point with a drone equipped with a NAVIO2 and Raspberry Pi, camera, sending them to the server, adjusting the location of the drone in line with threshold, Drones can automatically land at the landing point.

Realization of home appliance classification system using deep learning (딥러닝을 이용한 가전제품 분류 시스템 구현)

  • Son, Chang-Woo;Lee, Sang-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1718-1724
    • /
    • 2017
  • Recently, Smart plugs for real time monitoring of household appliances based on IoT(Internet of Things) have been activated. Through this, consumers are able to save energy by monitoring real-time energy consumption at all times, and reduce power consumption through alarm function based on consumer setting. In this paper, we measure the alternating current from a wall power outlet for real-time monitoring. At this time, the current pattern for each household appliance was classified and it was experimented with deep learning to determine which product works. As a result, we used a cross validation method and a bootstrap verification method in order to the classification performance according to the type of appliances. Also, it is confirmed that the cost function and the learning success rate are the same as the train data and test data.