• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.033 seconds

Host-based intrusion detection research using CNN and Kibana (CNN과 Kibana를 활용한 호스트 기반 침입 탐지 연구)

  • Park, DaeKyeong;Shin, Dongkyoo;Shin, Dongil
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.920-923
    • /
    • 2020
  • 사이버 공격이 더욱 지능화됨에 따라 기존의 침입 탐지 시스템(Intrusion Detection System)은 기존의 저장된 패턴에서 벗어난 지능형 공격을 탐지하기에 적절하지 않다. 딥러닝(Deep Learning) 기반 침입 탐지는 새로운 탐지 규칙을 생성하는데 적절하다. 그 이유는 딥러닝은 데이터 학습을 통해 새로운 침입 규칙을 자체적으로 생성하기 때문이다. 침입 탐지 시스템 데이터 세트는 가장 널리 사용되는 KDD99 데이터와 LID-DS(Leipzig Intrusion Detection-Data Set)를 사용했다. 본 논문에서는 1차원 벡터를 이미지로 변환하고 CNN(Convolutional Neural Network)을 적용하여 두 데이터 세트에 대한 성능을 실험했다. 평가를 위해 Accuracy, Precision, Recall 및 F1-Score 지표를 측정했다. 그 결과 LID-DS 데이터 세트의 Accuracy가 KDD99 데이터 세트의 Accuracy 보다 약 8% 높은 것을 확인했다. 또한, 1차원 벡터에 대한 데이터를 Kibana를 사용하여 데이터를 시각화하여 대용량 데이터를 한눈에 보기 어려운 단점을 해결하는 방법을 제안한다.

Emotion Recovery AR System for Children with Autism Spectrum Disorder Using EEG and Deep-Learning (뇌전도와 딥러닝을 활용한 자폐 스펙트럼 장애 아동의 정서 회복 증강현실 시스템)

  • Song, Da-won;Park, Jae-Cheol;Jang, Han-Gil;Hwang, Jeong-Tae;Lee, Jun-Pyo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.529-530
    • /
    • 2021
  • 본 논문에서는 MindWave와 AR 헤드셋 기기를 연동하여 자폐 스펙트럼 장애 아동이 불안감을 느낄 때 발산되는 뇌파 신호를 실시간으로 감지한다. 또한 실시간 객체 검출을 위한 YOLOv5 알고리즘을 통해 시각적 정보를 수집하여 해당 아동이 불안감을 느끼는 원인을 파악하고 이에 맞는 해결책을 AR 형태로 제시하며 자폐 스펙트럼 장애 아동이 불안감을 느끼면 보호자에게 알림을 전송하는 앱을 구현한다. 이를 통해 자폐 스펙트럼 장애 아동의 뇌파 안정과 정서 회복을 돕고 실생활에서 발생할 수 있는 돌발 상황을 방지할 수 있는 시스템을 제안한다.

  • PDF

Unsupervised learning-based automated patent document classification system (비지도학습 기반 자동 특허문서 분류 시스템)

  • Kim, Sang-Baek;Kim, Ji-Ho;Lee, Hong-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.421-422
    • /
    • 2021
  • 국내·외 기업들의 기술을 보호하고자 매년 100만개의 특허가 출원되고 있다. 등록된 특허 수가 증가될수록 전문가의 판단만으로 원하는 기술 분야의 유효한 특허문서를 선별하는 것은 효율적이지 않으며 객관적인 결과를 기대하기 어려워진다. 본 연구에서는 유효 특허문서 분류 정확성과 전문가의 업무 효율성을 제고하고자 비지도학습 모델인 잠재 디리클레 할당 알고리즘(Latent Dirichlet Allocation, LDA)과 딥러닝을 활용하여 자동 특허문서 분류 시스템을 제안하고자 한다.

  • PDF

AI drowsiness prevention application based on brain waves using deep learning (딥러닝을 이용한 뇌파 기반 AI 졸음 예방 어플리케이션)

  • Kang, Yeon-Jae;Kim, Da-Young;Choi, Yu-Ri
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1242-1244
    • /
    • 2021
  • 한국교통안전공단이 발표한 자료에 따르면 교통사고로 사망한 원인의 70%가 졸음운전이다. 최근에는 졸음운전을 예방하기 위해 눈 깜박임 인식 등의 운전자의 생체 데이터를 활용한 방법들이 대두되고 있다. 특히 운전자의 졸음운전 판단 기술로 뇌파를 이용하는 연구가 활발히 진행되고 있다. 본 논문에서는 뇌파를 사용하여 효과적으로 졸음 상태를 판단할 수 있는 딥러닝 알고리즘을 제안한다. 졸음 상태인 경우, 아닌 경우인 2가지의 운전자 상태를 85%의 정확도로 판단한다. 또한 제안한 알고리즘을 활용해 졸음운전 감지 시스템과 더불어 졸음운전 예방 시스템을 제안하고자 한다.

A Study of Succulent Home Gardening Assistance System Based on Deep Learning (딥러닝 기반 다육 식물 홈 가드닝 보조 시스템 연구)

  • Choi, Jiwon;Bae, Soohyeon;Cho, Seoyeon
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.697-699
    • /
    • 2021
  • 본 논문은 사람들이 다육식물을 키우는 데 실패하는 원인을 분석하고, 그에 따른 해결 방안으로 가드닝 보조 시스템을 연구한다. 사람들이 다육식물을 잘 키우지 못하는 이유를 세 가지로 분류하고 그 원인에 따른 해결방안을 딥러닝을 이용하여 제시한다.

Deep Learning-based Time Series Data Prediction Research for Performance Enhancement in Cloud Monitoring Systems (클라우드 모니터링 시스템의 성능 향상을 위한 딥러닝을 이용한 시계열 데이터 예측 연구)

  • 김동완;홍두표;신용태
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.342-344
    • /
    • 2023
  • 클라우드 시장의 성장과 마이크로 서비스 접근식이 제기됨에 따라 IT인프라를 관리하기 위한 연구가 최근 활발히 이루어지고 있다. 하지만 고도화 및 분산된 환경에서 관찰 가능성 응용을 확보하기 어렵다는 문제점을 가지고 있다. 따라서 본 연구에서는 모니터링 시스템을 통한 데이터 분석 중 수집한 데이터의 분석이 난해하다는 문제를 해결하기 위한 방법을 제안한다. 제안된 방법은 NAB 데이터셋을 대상으로 STUMPY를 이용하여 데이터를 시각화하고, CNN을 이용하여 분류 작업을 수행한다. 분류를 수행한 데이터셋은 이상치 데이터와 이상 전조 데이터, 정상 데이터셋으로 분류하여 데이터셋을 구성한다. 구성한 학습 데이터셋에 대해 훈련을 마친 딥러닝 모델은 부하 테스트 환경에서 수집한 데이터에 대한 그래프 패턴을 분석하여 이상치 데이터와 이상 전조 데이터를 탐지한다.

Sign Language Translation Wearable Device Using Motion Recognition (모션 인식을 이용한 수화 번역 웨어러블 기기)

  • Jun-yeong Lee;Hyeon-su Kang;Sung-jun Kim;Jun-ho Son;Dong-jun Yoo;Yang-woo Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.453-454
    • /
    • 2023
  • 현재 선천적인 청각장애인이나 언어 장애가 있는 사람은 다른 사람과의 대화에 많은 불편을 겪고 있다. 매장을 이용하기 어려움은 물론 언어전달 능력이 떨어지기 때문에 간단한 의사소통을 통한 서로 간의 교류 또한 불편함을 감수해야 한다. 현재는 따로 디스플레이가 내장된 장치를 이용하여 지정된 장소에서 수화를 번역해야 하는 불편함을 해당 문제 해결을 위해 본 연구에서는 딥러닝을 적용하여 수화를 인식하고 번역하여 디스플레이에 텍스트를 출력해주는 시스템을 개발하였다. AI 프레임워크 MediaPipe와 SVM 알고리즘을 라즈베리파이에 적용하여 구현하였다. 개발한 시스템은 제스처에 대한 번역 결과를 제공한다. 기존의 지정된 장소가 아닌 대화가 필요한 모든 장소에서 번역이 가능하도록 개선하여 청각장애인과 언어장애가 있는 사람들과 소통의 불편함을 줄일 수 있을 것으로 기대할 수 있다.

  • PDF

A Technique to Detect Spam SMS with Composed of Abnormal Character Composition Using Deep Learning (딥러닝을 이용한 비정상 문자 조합으로 구성된 스팸 문자 탐지 기법)

  • Ka-Hyeon Kim;Heonchang Yu
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.583-586
    • /
    • 2023
  • 대량 문자서비스를 통한 스팸 문자가 계속 증가하면서 이로 인해 도박, 불법대출 등의 광고성 스팸 문자에 의한 피해가 지속되고 있다. 이러한 문제점을 해결하기 위해 다양한 방법들이 연구되어 왔지만 기존의 방법들은 주로 사전 정의된 키워드나 자주 나오는 단어의 출현 빈도수를 기반으로 스팸 문자를 검출한다. 이는 광고성 문자들이 시스템에서 자동으로 필터링 되는 것을 회피하기 위해 비정상 문자를 조합하여 스팸 문자의 주요 키워드를 의도적으로 변형해 표현하는 경우에는 탐지가 어렵다는 한계가 있다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위해 딥러닝 기반 객체 탐지 및 OCR 기술을 활용하여 스팸 문자에 사용된 변형된 문자열을 정상 문자열로 복원하고, 변환된 정상 문자열을 문장 수준 이해를 기반으로 하는 자연어 처리 모델을 이용해 스팸 문자 콘텐츠를 분류하는 방법을 제안한다. 그리고 기존 스팸 필터링 시스템에 가장 많이 사용되는 키워드 기반 필터링, 나이브 베이즈를 적용한 방식과의 비교를 통해 성능 향상이 이루어짐을 확인하였다.

Currency Recognition System for Blind People (시각장애인을 위한 화폐 인식 시스템)

  • Dong-Jun Yoo;Sung-Jun Kim;Jun-Yeong Lee;Hyeon-Su Kang;Jun-Ho Son;Se-Jin Oh
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.257-258
    • /
    • 2024
  • 현재 시각장애인들이 현금을 사용하게 될 시 지폐가 얼마인지 확인할 방법이 없어 불편을 겪거나 금전적 사기를 당할 위험이 잦다. 한국은행에서는 이러한 사고를 막기 위해 점자 지폐를 만들어 발부하고 있지만 시각장애인 91%가 식별하지 못해 많은 불편을 겪고 있다. 본 논문에서는 딥러닝을 활용하여 화폐를 인식하고 TTS 기술을 사용하여 지폐의 값이 얼마인지 소리로 알려주는 시스템을 개발하였다. 지폐 인식을 위해 데이터를 직접 수집하여 YOLOv5 알고리즘을 활용하여 학습시킨 Weights 파일을 사용하였다. 이를 활용하여 시각장애인들은 더 안전하게 현금을 사용하고, 금전적인 문제를 예방할 수 있다.

  • PDF

Driver Drowsiness Detection System using Image Recognition and Bio-signals (영상 인식 및 생체 신호를 이용한 운전자 졸음 감지 시스템)

  • Lee, Min-Hye;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.859-864
    • /
    • 2022
  • Drowsy driving, one of the biggest causes of traffic accidents every year, is accompanied by various factors. As a general method to check whether or not there is drowsiness, a method of identifying a driver's expression and driving pattern, and a method of analyzing bio-signals are being studied. This paper proposes a driver fatigue detection system using deep learning technology and bio-signal measurement technology. As the first step in the proposed method, deep learning is used to detect the driver's eye shape, yawning presence, and body movement to detect drowsiness. In the second stage, it was designed to increase the accuracy of the system by identifying the driver's fatigue state using the pulse wave signal and body temperature. As a result of the experiment, it was possible to reliably determine the driver's drowsiness and fatigue in real-time images.