• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.027 seconds

영상인식 및 분류용 인공지능 가속기의 최신 성능평가: MLPerf를 중심으로

  • Seo, Yeong-Ho;Park, Seong-Ho;Park, Jang-Ho
    • Broadcasting and Media Magazine
    • /
    • v.25 no.1
    • /
    • pp.28-41
    • /
    • 2020
  • 인공지능의 고속화를 위한 인공지능용 혹은 딥러닝용 하드웨어 및 소프트웨어 시스템에 대한 수요가 폭발적으로 증가하고 있다. 또한 딥러닝 모델에 따라 다양한 추론 시스템이 끊임없이 연구되고 소개되고 있다. 최근에는 전세계에서 100개가 넘는 회사들에서 인공지능용 추론 칩을 개발하고 있고, 임베디드 시스템에서 데이터센터 솔루션에 이르기까지 다양한 분야를 위한 것들이 존재한다. 이러한 하드웨어의 개발을 위해서 12개 이상의 소프트웨어 프레임 워크 및 라이브러리가 활용되고 있다. 하드웨어와 소프트웨어가 다양한 만큼 이들을 중립적으로 평가하기가 매우 어려운 실정이다. 따라서 업계 표준의 인공지능을 위한 벤치마킹 및 평가기준이 필요한데, 이러한 요구로 인해 MLPerf 추론이 만들어졌다. MLPerf는 30개 이상의 기업과 200개 이상의 머신러닝 연구자 및 실무자들에 의해 운영되고, 전혀 다른 구조를 갖는 시스템을 비교할 수 있는 일관성 있는 규칙과 방법을 제시한다. MLPerf에 의해 제시된 규칙에 의해 2019년도에 처음으로 다양한 인공지능용 추론 하드웨어가 벤치마킹을 수행했다. 여기에는 14개의 회사에서 600개 이상의 추론 결과를 측정하였으며, 30개가 넘는 시스템이 이러한 추론에 사용되었다. 본 원고에서는 MLPerf의 학습과 추론을 중심으로 하여 최근에 개발된 다양한 회사들의 인공지능용 하드웨어, 즉 가속기 들의 성능을 살펴보고자 한다.

Transformer Based Deep Learning Techniques for HVAC System Anomaly Detection (HVAC 시스템의 이상 탐지를 위한 Transformer 기반 딥러닝 기법)

  • Changjoon Park;Junhwi Park;Namjung Kim;Jaehyun Lee;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.47-48
    • /
    • 2024
  • Heating, Ventilating, and Air Conditioning(HVAC) 시스템은 난방(Heating), 환기(Ventilating), 공기조화(Air Conditioning)를 제공하는 공조시스템으로, 실내 환경의 온도, 습도 조절 및 지속적인 순환 및 여과를 통해 실내 공기 질을 개선한다. 이러한 HVAC 시스템에 이상이 생기는 경우 공기 여과율이 낮아지며, COVID-19와 같은 법정 감염병 예방에 취약해진다. 또한 장비의 과부하를 유발하여, 시스템의 효율성 저하 및 에너지 낭비를 불러올 수 있다. 따라서 본 논문에서는 HVAC 시스템의 이상 탐지 및 조기 조치를 위한 Transformer 기반 이상 탐지 기법의 적용을 제안한다. Transformer는 기존 시계열 데이터 처리를 위한 기법인 Recurrent Neural Network(RNN)기반 모델의 구조적 한계점을 극복함에 따라 Long Term Dependency 문제를 해결하고, 병렬처리를 통해 효율적인 Feature 추출이 가능하다. Transformer 모델이 HVAC 시스템의 이상 탐지에서 RNN 기반의 비교군 모델보다 약 1.31%의 향상을 보이며, Transformer 모델을 통한 HVAC의 이상 탐지에 효율적임을 확인하였다.

  • PDF

A Study on Deep Learning Based RobotArm System (딥러닝 기반의 로봇팔 시스템 연구)

  • Shin, Jun-Ho;Shim, Gyu-Seok
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.901-904
    • /
    • 2020
  • 본 시스템은 세 단계의 모델을 복합적으로 구성하여 이루어진다. 첫 단계로 사람의 음성언어를 텍스트로 전환한 후 사용자의 발화 의도를 분류해내는 BoW방식을 이용해 인간의 명령을 이해할 수 있는 자연어 처리 알고리즘을 구성한다. 이후 YOLOv3-tiny를 이용한 실시간 영상처리모델과 OctoMapping모델을 활용하여 주변환경에 대한 3차원 지도생성 후 지도데이터를 기반으로하여 동작하는 기구제어 알고리즘 등을 ROS actionlib을 이용한 관리자시스템을 구성하여 ROS와 딥러닝을 활용한 편리한 인간-로봇 상호작용 시스템을 제안한다.

Consideration upon Importance of Metadata Extraction for a Hyper-Personalized Recommender System on Unsupervised Learning (비지도 학습 기반 초개인화 추천 서비스를 위한 메타데이터 추출의 중요성 고찰)

  • Paik, Juryon;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.19-22
    • /
    • 2022
  • 서비스 관점에서 구축되는 추천 시스템의 성능은 얼마나 효율적인 추천 모델을 적용하여 심층적으로 설계되었는가에 좌우된다고도 볼 수 있다. 특히, 추천 시스템의 초개인화는 세계적인 추세로 1~2년 전부터 구글, 아마존, 알리바바 등의 데이터 플랫폼 강자들이 경쟁적으로 딥 러닝 기반의 알고리즘을 개발, 자신들의 추천 서비스에 적용하고 있다. 본 연구는 갈수록 고도화되는 추천 시스템으로 인해 발생하는 여러 문제들 중 사용자 또는 서비스 정보가 부족하여 계속적으로 발생하고 있는 Cold-start 문제와 추천할 서비스와 사용자는 지속적으로 늘어나지만 실제로 사용자가 소비하게 되는 서비스의 비율은 현저하게 감소하는 데이터 희소성 문제 (Sparsity Problem)에 대한 솔루션을 모색하는 알고리즘 관점에서 연구하고자 한다. 본 논문은 첫 단계로, 적용하는 메타데이터에 따라 추천 결과의 정확성이 얼마나 차이가 나는지를 보이고 딥러닝 비지도학습 방식을 메타데이터 선정 및 추출에 적용하여 실시간으로 변화하는 소비자의 실제 생활 패턴 및 니즈를 예측해야 하는 필요성에 대해서 기술하고자 한다.

  • PDF

Research on the Design of a Deep Learning-Based Automatic Web Page Generation System

  • Jung-Hwan Kim;Young-beom Ko;Jihoon Choi;Hanjin Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.21-30
    • /
    • 2024
  • This research aims to design a system capable of generating real web pages based on deep learning and big data, in three stages. First, a classification system was established based on the industry type and functionality of e-commerce websites. Second, the types of components of web pages were systematically categorized. Third, the entire web page auto-generation system, applicable for deep learning, was designed. By re-engineering the deep learning model, which was trained with actual industrial data, to analyze and automatically generate existing websites, a directly usable solution for the field was proposed. This research is expected to contribute technically and policy-wise to the field of generative AI-based complete website creation and industrial sectors.

A Study on Building Korean Dialogue Corpus for Restaurant reservation and recommendation (식당예약 및 추천을 위한 한국어 대화 코퍼스 구축 연구)

  • So, Aram;Park, Kinam;Lim, HeuiSeok
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.630-632
    • /
    • 2018
  • 최근 딥러닝(Deep Learning)기반 연구가 활발해짐에 따라 딥러닝 모델 기반의 대화 시스템 연구가 활성화되고 있다. 하지만 이러한 연구는 다량의 데이터를 기반으로 이루어지기 때문에 데이터 구축 연구의 필요성이 증가하고 있다. 기존에 공개된 대화 코퍼스는 대부분 영어로 이루어져있어 한국어 대화 시스템에는 적용하기 어렵다. 본 논문에서는 한국어 대화 코퍼스 구축을 위하여 식당예약 및 추천을 위한 한국어 대화를 수집하였으며, 총 498개의 대화를 수집하였다. 대화는 식당 예약 및 추천을 위한 12개의 정보를 수집할 수 있도록 구성하였다. 또한 데이터의 활용성을 높이기 위하여 데이터 후처리 작업으로 12개의 정보를 태깅작업을 하였다.

  • PDF

Distance Estimation Method of UWB System Using Convolutional Neural Network (합성곱 신경망을 이용한 UWB 시스템의 거리 추정 기법)

  • Nam, Gyeong-Mo;Jeong, Eui-Rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.344-346
    • /
    • 2019
  • In this paper, we propose a distance estimation method using the convolutional neural network in Ultra-Wideband (UWB) systems. The training data set used to learn the deep learning model using the convolutional neural network is generated by the MATLAB program and utilizes the IEEE 802.15.4a standard. The performance of the proposed distance estimation method is verified by comparing the threshold based distance estimation technique and the performance comparison used in the conventional distance estimation.

  • PDF

Development of Broadcast Content Class Classification System based on Deep Learning (딥러닝 기반 방송 콘텐츠 클래스 분류 시스템 개발)

  • Kim, Shin;Yoon, Kyoungro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.334-335
    • /
    • 2018
  • 최근 수 년간 비디오 콘텐츠 소비 공간이 인터넷으로 확장되며 지능적 비디오 콘텐츠 추천 기술 개발이 진행되어 왔다. 하지만 지능적 비디오 콘텐츠 추천 기술은 사용자의 기호나 업로드된 비디오 콘텐츠의 제목 등을 기반으로 하여 비디오 콘텐츠 클래스에 대한 분석 없이 유사한 비디오 콘텐츠를 탐색하고 추천해주는 기술이 대부분이다. 본 논문에서는 지능적 콘텐츠 추천을 위한 딥러닝 기반 방송 콘텐츠 클래스 분류 시스템을 제안한다. 방송 콘텐츠 내 영상 정보를 이용하여 방송 콘텐츠 클래스를 분류하며 높은 분류 정확도를 보여주는 것을 확인할 수 있다.

  • PDF

Pre-processing and implementation for intelligent imagery interpretation system (지능형 영상 판독 시스템 설계를 위한 전처리 및 구현)

  • Jeon, TaeHyeon;Na, HyungSun;Ahn, Jinhyun;Im, Dong-Hyuk
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.305-307
    • /
    • 2021
  • 군사 분야에서 사용하는 기존 영상융합체계는 영상에서 미확인 개체를 식별하는 Activity-Based Intelligence(ABI) 기술과 객체들에 대한 지식정보를 관리하는 Structured Observation Management(SOM) 기술을 연동하여 다양한 관점에서 분석하고 있다. 그러나 군사적인 목적을 달성하기 위해서는 미래 정보가 중요하기 때문에 주변 맥락 정보를 통합하여 분석해야 할 필요성이 있으며 이를 위해 주변맥락 정보를 분석하는 딥러닝 모델 적용이 필요하다. 본 논문에서는 딥러닝 모델 기반 영상 판독 시스템 구축을 하기 위한 전처리 과정을 설계하였다. pyhwp 라이브러리를 이용하여 영상 정보 판독 데이터를 파싱 및 전처리를 진행하여 데이터 구축을 진행하였다.

Multi-object Tracking System for Disaster Context-aware using Deep Learning (드론 영상에서 재난 상황인지를 위한 딥러닝 기반 다중 객체 추적 시스템)

  • Kim, Chanran;Song, Jein;Lee, Jaehoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.697-700
    • /
    • 2020
  • 고위험의 재난 상황에서 사람이 상황을 판단하고, 요구조자를 탐색하며, 구조하는 것은 추가 피해를 발생시킬 수 있다. 따라서 재난 상황에서도 이동과 접근이 용이한 무인항공에 관한 연구와 개발이 활발히 이루어지고 있다. 재난 상황에서 신속하게 대처하기 위해서는 선제적 상황인지 기술이 필요하다. 이에 본 논문은 구조 및 대피를 위해 사람, 자동차, 자전거 등의 객체를 인식하고 중복 인식을 피하기 위해 추적하는 딥러닝 기반 다중 객체 추적 시스템을 제안한다. 2019 인공지능 R&D 그랜드 챌린지 상황인지 부문에서의 대회 결과로 실험 성능을 증명한다.

  • PDF