• Title/Summary/Keyword: 딜라토미터

Search Result 14, Processing Time 0.019 seconds

Study on the Anisotropic Size Change by Austenitizing and Tempering Heat Treatment of STD11 Tool Steel Using Dilatometry (딜라토미터를 이용한 STD11 공구강의 오스테나이징 및 템퍼링 열처리에 따른 치수 변화 이방성 연구)

  • Hong, Ki-Jung;Kang, Won-Guk;Song, Jin-Hwa;Chung, In-Sang;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.800-808
    • /
    • 2008
  • Heat treatment is an important step for tool manufacture, but unavoidably generates dimensional distortion. This study investigated the continuous dimensional change and the anisotropic behavior of STD11 tool steel during austenitizing and tempering heat treatment especially using quenching dilatometer. Dilatometric results represented that the dimensional change along longitudinal direction was larger than that along transverse direction. Anisotropic phase transformation strain was produced in forged STD11 tool steel during heat treatment. Anisotropic dimensional change increased with increasing austenitizing temperature. After tempering, anisotropic distortion was partially reduced. FactSage thermodynamic equilibrium phase simulation and microstructural observation (FE-SEM, TEM) showed that large ($7{\sim}80{\mu}m$) elongated $M_7C_3$ carbides could be formed along rolling direction. The resolution of elongated carbides during austenitizing was found to be related with the change of martensite transformation temperature after heat treatment. Anisotropic size change of STD11 tool steel was mainly attributed to large elongated carbides produced during rolling process. Using dilatometric and metallographic examination, the possible mechanism of the anisotropic size change was also discussed.

A Prediction of Thermal Expansion Coefficient for Compacted Bentonite Buffer Materials (압축 벤토나이트 완충재의 열팽창계수 추정)

  • Yoon, Seok;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.339-346
    • /
    • 2018
  • A geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is indispensable to assure the disposal safety of high-level radioactive waste. Since the heat generated from spent nuclear fuel in a disposal canister is released to the surrounding buffer materials, the thermal properties of the buffer material are very important in determining the entire disposal safety. Especially, since thermal expansion can cause thermal stress to the intact rock mass in the near-field, it is very important to evaluate thermal expansion characteristics of bentonite buffer materials. Therefore, this paper presents a thermal expansion coefficient prediction model of the Gyeongju bentonite buffer materials which is a Ca-bentonite produced in South Korea. The linear thermal expansion coefficient was measured considering heating rate, dry density and temperature variation using dilatometer equipment. Thermal expansion coefficient values of the Gyeongju bentonite buffer materials were $4.0{\sim}6.0{\times}10^{-6}/^{\circ}C$. Based on the experimental results, a non-linear regression model to predict the thermal expansion coefficient was suggested and fitted according to the dry density.

Evaluation of Disturbance Effect of Penetrometer by Dissipation Tests (소산 실험을 이용한 관입 장비의 교란 효과 추정)

  • Yoon, Hyung-Koo;Hong, Sung-Jin;Lee, Woojin;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.339-347
    • /
    • 2008
  • The penetration of the probe produces the excess pore pressure due to the disturbance. The objective of this study is to evaluate the disturbance zone by using the dissipation of the excess pore water pressure, which was generated due to the penetration of the penetrometer with different size. The CPT, DMT and FVP (Field Velocity Probe) are adopted for in-situ tests. The tests are carried out in the construction site of north container pier of Busan new port, Korea where is accelerating the consolidation settlement using plastic board drains (PBD) and surcharges by crushed gravels. The coefficient of consolidation $(C_h)$ and soil properties are deduced by the laboratory test. The in-site tests are performed after the predrilling the surcharge zone at the point of 90% degree of consolidation. To minimize the penetration effect, the horizontal distance between penetration tests is 3m, the change of the pore pressure is monitored at the fixed depth of 24m. The coefficient of consolidation $(C_h)$ and the $t_{50}s$ are calculated based on the laboratory test and the in-situ data, respectively. The equvalent radi based on the $t_{50}$ shows that the FVP and the DMT produce the smallest and the greatest equivalent radi, respectively.

The Prediction Method of the Small Strain Shear Modulus for Busan Clay Using CPT and DMT (CPT와 DMT를 이용한 부산점토의 최대전단탄성계수 추정방법에 관한 연구)

  • Hong, Sung-Jin;Yoon, Hyung-Ko;Lee, Jong-Sub;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.5-16
    • /
    • 2009
  • The is study is to evaluate the small strain shear modulus ($G_{max}$) of Busan clay using in-situ penetration tests. A series of dilatometer tests (DMT) and piezocone penetration tests (CPTu) are performed at Busan newport and Noksan sites, and hybrid oedometer tests are also carried out on the specimens obtained from both sites. The $G_{max}$ is evaluated from the shear wave velocity ($V_s$) measured by the bender elements installed at the boundary of oedometer cell. By analyzing these data, the relationship of $G_{max}$ and state variables, such as confined stress and void ratio, is developed. The analysis of lab and in-situ test results reveals that the ratio of $G_{max}$ to $q_t$ is inversely proportional to the plasticity index while the ratio of $G_{max}$ to $E_D$ has a linear relationship with ($I/I_D$)$(p_a/{\sigma}'_v)^{0.5}$. Two correlations suggested in this study, based on CPT and DMT results, appear to provide reasonable predictions of the small strain shear modulus.