• Title/Summary/Keyword: 디콘볼루션

Search Result 30, Processing Time 0.036 seconds

Multichannel Blind Deconvolution of Multistage Structure to Eliminate Interference and Reverberation Signals (간섭 및 반향신호 제거를 위한 다단계 구조의 다채널 암묵 디콘볼루션)

  • Lim, Joung-Woo;Jeong, Gyu-Hyeok;Joo, Gi-Ho;Kim, Young-Ju;Lee, In-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.85-93
    • /
    • 2007
  • In case that multichannel blind deconvolution (MBD) applies to signals of which autocorrelation has a high level, separated signals are temporally whitened by diagonal elements of a separation filter matrix. In order to reduce this distortion, the algorithms, which are based on either constraining diagonal elements of a separation filter matrix or estimating a separation filter matrix by using linear prediction residual signals, are presented. Still, some problems are generated in these methods, when we separate reverberation of signals themselves or interference signals from mixed signals. To solve these problems, this paper proposes the multichannel blind deconvolution method which divides processing procedure into the stage to separate interference signals and the stage to eliminate a reverberation of signals themselves. In simulation results, we confirm that the proposed algorithm can solve the problems.

Optimal Rejection of Sea Bottom, Peg-leg and Free-surface Multiples for Multichannel Seismic Data on South-eastern Sea, Korea (동해 남동해역 다중채널 해양탄성파 탐사자료의 해저면, 페그-레그 및 자유해수면 다중반사파 제거 최적화 전산처리)

  • Cheong, Snons;Koo, Nam-Hyung;Kim, Won-Sik;Lee, Ho-Young;Shin, Won-Chul;Park, Keun-Pil;Kim, Jin-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.289-298
    • /
    • 2009
  • Optimal data processing parameters were designed to attenuate multiples in seismic data acquired in the south-eastern area of the East Sea, in 2008. Bunch of multiples caused by shallow sea water depth were perceived periodically up to two way travel time of 1,750 ms at every 250 ms over seismic traces. We abbreviated sea bottom multiple as SBM, Peg-leg multiple as PLM, and free-surface multiple as FSM. To attenuate these multiples, seismic data processing flow was constructed including NMO, stack, minimum phase predictive deconvolution filter and wave equation multiple rejections (WEMR). Prevalent multiples were suppressed by predictive deconvolution and remaining multiples were attenuated by WEMR. We concluded that combining deconvolution with WEMR was effective to a seismic data of study area. Derived parameter can be applied to the seismic data processing on adjacent survey area.

Timing Jitter Compensation in Data-Driven Echo Canceller (Data-Driven 반향 제거기를 위한 타이밍 지터 보상)

  • 이재혁;이용환
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.565-568
    • /
    • 2000
  • 본 논문에서는 data-driven 반향제거기 구조에서 타이밍 지터의 보상 방법을 제안한다. V.90PCM 모뎀환경에서 네트윅 클록에 동기가 되어 동작하는 사용자 터미널 모뎀이 디지털 PLL (DPLL)을 이용하여 타이밍 복원을 하면 타이밍 지터 성분이 반향제거기의 성능을 순간적으로 악화 시키게 된다. 제안된 방법은 두개의 계수세트 들로부터 타이밍 지터 발생시 필요한 계수를 디콘볼루션 알고리듬을 이용하여 FIR 필터링을 통해 구하며 발생하는 지터 성분 의 대부분을 보상 해 준다. 또한 제안 방법은 waveform driven 반향제거기에 비해 약간의 성능열화가 있지만 적은 연산량으로 타이밍 지터보상을 할 수 있는 장점이 있다.

  • PDF

Extracting room reverberation from speech using the minimum phase space volume technique (MPSV) (MPSV방법을 이용한 음성에서의 잔향 추출)

  • Kim Lae-Hoon;Sung Koeng-Mo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.159-162
    • /
    • 2001
  • 음장의 공간 음향적인 특성에 영향을 받은 음성신호를 원래 신호로 복원하기 위해서 본 논문에서는 MPSV (Minimum Phase Space Volume) 방법 을 도입한다 MPSV 방법 은 신호를 복원하기 위해 원래 신호의 어떠한 사전 정보나 가정을 필요로 하지 않고 그 신호의 비선형적인 동적 특이성만을 이용하는 블라인드 디콘볼루션 (Blind deconvolution) 방법이다. 또한, 이 방법을 이용하여 원래 신호를 복원하는 동시에 음장의 충격응답과 같은 시스템 특성까지도 유추가 가능하다.

  • PDF

Correction of collimator aperture in plasma image measurement system (플라즈마화상 계측 시스템에 있어서의 시준기특성의 보정)

  • 백승권;하영선;윤상호
    • Electrical & Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.361-365
    • /
    • 1993
  • 플라즈마화상 계측 시스템에 있어서 단층화상의 화질이 떨어지는 문제점 중의 하나로서 시준기특성이 있다. 이것은 시준기가 길이를 가진 형태이기 때문에 생기는 것으로써 화상에서는 천이변형의 왜곡으로 나타난다. 본 논문에서 보정법으로 측정데이타를 공간주파수상에서 천이불변형태로 디콘볼루션하는 방법을 제시하고 시준기의 각도를 파라메타로 해서 플라즈마 계측에 의한 실제의 데이타에 그 보정법의 유효성을 검증하였다.

  • PDF

EXTRACTION OF INTERPRETIVE WAVELETS BY MODIFIED WIENER FILTER METHOD - TEST AND EVALUATION WITH MARINE SESMIIC DATA- (修正 위너필터 方法에 依한 解釋波의 抽出 -海洋彈性波 探査資料에 依한 實驗 및 評價)

  • Youn, Oong Koo;Han, Sang-Joon;Park, Byung Kwon
    • 한국해양학회지
    • /
    • v.18 no.2
    • /
    • pp.117-124
    • /
    • 1983
  • Pizza's synthetic model, a modified Wiener filter method, was tested to establish the procedure of desirable interpretive wavelet extraction and its application to the marine seismic exploration using several approaches with a real offshore seismic data of the southeast Asia. Noise spectrum acquisition is difficult and any assumptions for it do not produce interpretive wavelets as good as synthetic model result by Piazza (1979). however the resolution could be improved with spiking deconvoultion and following zero phase bandpass filter, and the testing procedure and evaluatttion of results can hopefully contribute in future study and practical evaluation of Piazza's method.

  • PDF

Non-uniform Deblur Algorithm using Gyro Sensor and Different Exposure Image Pair (자이로 센서와 노출시간이 다른 두 장의 영상을 이용한 비균일 디블러 기법)

  • Ryu, Ho-hyeong;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.200-209
    • /
    • 2016
  • This paper proposes a non-uniform de-blur algorithm using IMU sensor and a long/short exposure-time image pair to efficiently remove the blur phenomenon. Conventional blur kernel estimation algorithms using sensor information do not provide acceptable performance due to limitation of sensor performance. In order to overcome such a limitation, we present a kernel refinement step based on images having different exposure times which improves accuracy of the estimated kernel. Also, in order to figure out the phenomenon that conventional non-uniform de-blur algorithms suffer from severe degradation of visual quality in case of large blur kernels, this paper a homography-based residual de-convolution which can minimize quality degradation such as ringing artifacts during de-convolution. Experimental results show that the proposed algorithm is superior to the state-of-the-art methods in terms of subjective as well as objective visual quality.

Optimum Quality Control of Seismic Data of Kunsan Basin in Offshore Korea (국내대륙붕 군산분지에 대한 탄성파 전산처리의 최적 매개 변수 결정)

  • Kim, Kun-Deuk
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.3
    • /
    • pp.161-169
    • /
    • 1998
  • The Kunsan basin is a pull-apart basin which was formed during Tertiary. The pre-Tertiary section consists of various rock types, such as meta-sediments, igneous rocks, carbonates, clastics, and volcanics. Tertiary sections are the main targets for the petroleum exploration. In order to determine the optimum processing parameters of the basin, about 12 kinds of test processings were performed. The first main steps for the quality control is to determine the noisy or bad traces by examining the near trace section and shot gathers. The true amplitude recovery was applied to account for the amplitude losses due to spherical divergence and inelastic attenuation. Source designature and predictive deconvolution test were conducted to determine the optimum wavelet parameters and to remove the multiples. Velocity analysis was performed at 1km intervals. The optimum mute function was picked by locating the range of offsets which gives the best stacking response for any particular reflections. Post-stack deconvolution was tested to see if the quality of stacked data improved. The stacked data was migrated using a finite difference algorithm. The migration velocity was obtained from the stacking velocities using the time varying percentages. The AGC sections were provided for the structural interpretation. The RAP sections were used for DHI analysis and for the detection of volcanics.

  • PDF

Risk Assessment of Cut Slope by Gravity Field Interpretation and Modelling (비탈면 위험도 평가를 위한 중력장 해석 및 모델링)

  • Choi, Sungchan;Kim, Sung-Wook;Choi, Eun-Kyoung;Lee, Yeong-Jae;Jang, Hyun-Ick
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.533-540
    • /
    • 2021
  • Gravity field analysis and density modeling were performed to evaluate the internal state of the rock mass, which is the cause of cut slope collapse. The shape of the weathered zone and the depth of basement could be confirmed from the complete Bouguer anomaly and density model. The basement depth at the center of the cut slope calculated using the Euler deconvolution inverse method is 30 m, which is about 10 m deeper than the surrounding area. In addition, the depth of basement and the thickness of the weathered zone are similar to the boundary between low resistivity and high resistivity in dipole-dipole survey. From the study results, gravity field analysis and density modeling recognizes the internal state of the rock slope and can be used for slope safety analysis, and is particularly suitable as a method to determine the shape of weathered zones in interpreting the safety of cut slopes