• Title/Summary/Keyword: 디젤 배출 가스

Search Result 335, Processing Time 0.024 seconds

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

Effects of Aromatics and T90 Temperature of Low Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion (저온디젤연소에서 저세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1121-1126
    • /
    • 2010
  • This study is to investigate the effects of aromatics and T90 for low cetane number (CN) fuels on combustion and exhaust emissions in low-temperature diesel combustion. We use a 1.9-L common rail direct injection diesel engine at 1500 rpm and 2.6 bar BMEP. Low temperature diesel combustion was achieved via a high external EGR rate and strategic injection control. The tested fuels four sets: the aromatic content was 20% (A20) or 45% (A45) and the T90 temperature was $270^{\circ}C$ (T270) or $340^{\circ}C$ (T340) with CN 30. Given the engine operating conditions, the T90 was the stronger factor on the ignition delay time, resulting in a longer ignition delay time for higher T90 fuels. All the fuels produced nearly zero PM because of the extension of the ignition delay time induced by the low cetane number. The aromatic content was the main factor that affected the NOx and the NOx increased with the aromatic content.

Numerical Study on the Effect of Diesel Injection Parameters on Combustion and Emission Characteristics in RCCI Engine (RCCI 엔진의 디젤 분사 파라미터에 따른 연소 및 배출가스 특성에 대한 수치적 연구)

  • Ham, Yun-Young;Min, Sunki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.75-82
    • /
    • 2021
  • Low-temperature combustion (LTC) strategies, such as HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), and RCCI (Reactivity Controlled Compression Ignition), have been developed to effectively reduce NOx and PM while increasing the thermal efficiency of diesel engines. Through numerical analysis, this study examined the effects of the injection timing and two-stage injection ratio of diesel fuel, a highly reactive fuel, on the performance and exhaust gas of RCCI engines using gasoline as the low reactive fuel and diesel as the highly reactive fuel. In the case of two-stage injection, combustion slows down if the first injection timing is too advanced. The combustion temperature decreases, resulting in lower combustion performance and an increase in HC and CO. The injection timing of approximately -60°ATDC is considered the optimal injection timing considering the combustion performance, exhaust gas, and maximum pressure rise rate. When the second injection timing was changed during the two-stage injection, considering the combustion performance, exhaust gas, and the maximum pressure increase rate, it was judged to be optimal around -30°ATDC. In the case of two-stage injection, the optimal result was obtained when the first injection amount was set to approximately 60%. Finally, a two-stage injection rather than a single injection was considered more effective on the combustion performance and exhaust gas.

The Effect of HHO Gas on the Performance of Industrial Diesel Engine Using Biodiesel Blended Fuel (흡기중의 HHO 가스 첨가가 바이오 디젤 혼합연료를 사용한 산업용 디젤기관의 성능에 미치는 영향)

  • Park, Kweon-Ha;Kim, Ju-Youn;Kim, Chul-Jung;Lee, Eun-June;Son, Kwon;Park, Sung-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1022-1027
    • /
    • 2011
  • A diesel engine works in high compression ratio due to injection of diesel fuel after compression of air. Therefore the engine has a high thermal efficiency, while nitrogen oxide is produced a lot in high flame temperature regions. In order to solve the problem this study HHO gas is added into the intake air of the industrial diesel engine. The test conditions are loads of 0%, 50% and 100% and engine speeds of 700 to 1900 rpm. The results show the maximum torque and pressure is increased, fuel consumption, smoke and CO emissions are decreased and NOx emission is remained at same level.

Effect of EGR on power and exhaust emissions in diesel engine (디젤엔진의 출력 및 배기가스에 미치는 EGR의 영향)

  • Song, Kyu-keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.870-875
    • /
    • 2015
  • Diesel engines are widely used due to superior power and fuel consumption, however there are many challenges in exhaust gas management. Exhaust gas recirculation (EGR) is the most effective technique for reducing mono-nitrogen oxide (NOx) emissions in a diesel engine, in comparison with other catalytic technologies. In addition, the technology has a number of advantages in terms of economic efficiency and implementation. In this study, the effects on the power and exhaust characteristics of diesel engines equipped with EGR systems were investigated. It was found that as the EGR rate increased, horsepower expressed as IHP and BHP decreased. The net effect of the application of EGR was measured at various engine speeds. EGR technology caused decreases in BHP of around 9% during low engine speed and 3.5% during high engine speed. Additionally, NOx emissions reduced as the EGR rate increased, and increased as engine speed increased. However, smoke emissions increased as the EGR rate increased, and decreased as engine speed increased. The optimum operating conditions and ERG rate to simultaneously achieve minimum NOx and smoke emissions were investigate. It was found that as the EGR rate increased, optimal operating speed for minimal NOx and smoke also increased. Keywords: Diesel engine, Exhaust gas recirculation, Power perfomance, Emission characteristics, NOx, Smoke

Diesel Combustion Strategies Effect on Exhaust Emissions and Hydrocarbon Species (디젤 연소 전략에 따른 배기가스 및 탄화수소 종 분석)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.759-765
    • /
    • 2012
  • This study investigates the effect of diesel combustion strategies on exhaust emissions and hydrocarbon species emissions for a 1.7 L common rail direct injection diesel engine at 1500 rpm and 3.9 bar BMEP. The first strategy is a method to adopt no EGR with a split injection composed of pilot and main injection (split injection). The second is to adopt a moderate EGR rate with main injection only (single-1). The third is to use a high level of EGR and main injection with rail pressure increase, $i.e.$ low-temperature diesel combustion (single-2). Split injection and single-1 showed a renowned phenomenon of a PM-NOx trade-off, whereas single-2 was observed of a PM-NOx trade-off to reduce PM and NOx simultaneously. HC speciation results show that the split injection produced the least amount of HC species, regardless of the carbon number bin, followed by single-1 and single-2. The ratios of methane, acetylene, and CO to THC increased as a combustion A/F ratio is richer due to reduced oxygen content in the vicinity of the combustion zone, thus enhancing pyrolysis.

Data Evaluation Methods for Real Driving Emissions using Portable Emissions Measurement System(PEMS) (PEMS를 이용한 실제도로 주행 배출가스 측정 데이터 분석방법)

  • Kwon, Seokjoo;Kwon, Sangil;Lee, Jongtae;Oak, Seonil;Seo, Youngho;Park, Sungwook;Chon, Mun Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.965-973
    • /
    • 2015
  • Recently, an emission test procedure using a portable emissions measurement system(PEMS) has received much attention as an effective means of controlling real driving emissions from light-duty diesel vehicles. The PEMS-based test procedure will be implemented from 2017 in Europe and Korea as a complementary test procedure for certification and regulation. In the present study, on-road NOx emissions were measured for four kinds of Euro 5 Korean light-duty diesel vehicles under real driving conditions, including urban, rural, and motorway test routes. The real driving emission characteristics were evaluated using both a moving averaging window(MAW) and the weighted emission method(WEM). The evaluated NOx emission results (under real driving conditions) from the MAW and WEM showed similar tendencies for the test vehicles and routes, while exceeding the certification emission limit by 1.8~8.5 and 2.0~10.6 times, respectively.

Numerical study on effect of intake valve timing on characteristics of combustion and emission of Natural gas-Diesel engine (발전용 천연가스-디젤 혼소 엔진의 흡기밸브 개폐시기에 따른 연소 및 배출 특성에 대한 수치 해석적 연구)

  • Jung, Jaehwan;Song, Soonho;Hur, Kwang beom
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.29-36
    • /
    • 2016
  • In this study, diesel/natural gas dual-fuel engine was studied numerically using DoE method. The engine is CI engine for power generation and modelled by 1-D simulation GT-power. The combustion and emission characteristics were analyzed as a function of IVO, IVC and the ratio of natural gas to total fuel enegy. As the proportion of natural gas increases, the BSFC(Brake specific fuel consumption) is increased and BSNOx(Brake specific NOx) is decreased. If specific valve timing to improve the BSFC is applied to the engine, the BSFC is decreased by 1% and simultaneously BSNOx is decreased by 36%.

A Study on Exhaust Gas Characteristics of Off-road Mechanical Diesel Engine According to EGR Map Application (Off-Road 기계식 디젤엔진의 EGR Map 적용에 따른 배출가스 특성 연구)

  • Kim, HoonMyung;Kang, JeongHo;Han, DaHye;Ha, HyeongSoo;Jung, HakSup;Pyo, SuKang;Ahn, JuengKyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.665-670
    • /
    • 2014
  • Because reducing atmospheric pollution is becoming a serious issue, studies are actively focusing on exhaust gas reduction. This study was conducted to determine the emission characteristics when applying an EGR system, the main approach used for NOx reduction, to an off-road mechanical diesel engine. For the application of the EGR system, the emission characteristics in consideration of the engine conditions were analyzed. The optimum EGR ratio for NOx emission reduction was determined by applying variable EGR conditions for each engine speed condition. Considering the above process, the emission characteristics of the modified EGR condition are compared with those of other conditions (non-EGR and existing EGR condition) in the NRTC mode. Consequently, NOx emission was reduced by around 42 compared with the non-EGR condition when using the modified EGR map.