• Title/Summary/Keyword: 디젤 대체연료

Search Result 162, Processing Time 0.029 seconds

Engine Performance and Emission Characteristics in A HD Diesel Engine by the Application of GTL Fuel (대형디젤기관에서 GTL 연료 적용에 따른 기관성능 및 배출 가스 특성)

  • Baik, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.998-1003
    • /
    • 2006
  • In this research, engine performance and emission characteristics of a 12,000cc heavy duty diesel engine was investigated by the application of GTL and ULSD fuels. The test was conducted at several engine speeds and loads under a single mode and a ESC mode. GTL fuel proves that it can be applicable to vehicles without engine modification.

  • PDF

Combustion and Emission Characteristics of 4 Cylinder Common-Rail DI Diesel Engine with Biodiesel Blended Fuel (4 실린더 직접분사식 디젤엔진에서 바이오디젤 혼합연료의 연소 및 배기특성)

  • Lee, Dong-Gon;Roh, Hyun-Gu;Choi, Seuk-Cheun;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • This paper describes the effects of biodiesel blended fuel on the engine combustion and emission characteristics in a four cylinder CRDI(Common-rail direct injection) diesel engine. In this work, the biodiesel-diesel blended fuel(20% of biodiesel and 80% of ULSD(ultra low sulfur diesel) by volume ratio, BD20) and ULSD fuel are used under the various injection pressures and engine speeds. The experimental results of BD20 and ULSD fuel show that NOx emissions were increased and soot emissions were decreased with the increase of injection pressure. In particular, NOx emissions were slightly increased for the BD20 fuel, however, soot emissions were significantly reduced compared to the ULSD fuel. When the engine speed is increased from 1000rpm to 2000rpm, NOx emissions are decreased at all tested conditions, and soot emissions are largely increased at lower injection pressure.

Interfuel Substitution and Carbon Dioxide Emission in the Transportation Sector: Roles of Biodiesel Blended Fuels (수송부문의 연료 간 대체와 이산화탄소 배출: 바이오디젤 혼소 효과를 중심으로)

  • Hyonyong Kang;Dong Hee Suh
    • Environmental and Resource Economics Review
    • /
    • v.32 no.1
    • /
    • pp.27-46
    • /
    • 2023
  • This paper investigates how interfuel substitution affects carbon dioxide (CO2) emissions with a focus on the use of biodiesel blended fuels. The results show that the Divisia elasticity of diesel demand is the greatest because the transportation sector relies heavily on diesel. Also, while the own-price elasticity of each fuel demand is negative, the results reveal that diesel demand is more inelastic than the demand for gasoline and LPG. Moreover, gasoline is a substitute for diesel and electricity, and diesel is a substitute for LPG and a complement for electricity. Regarding the effects on carbon dioxide emissions, this paper computes the potential CO2 emissions associated with interfuel substitution using the coefficients of CO2 emissions. The results show that using biodiesel blended fuels contributes to reducing CO2 emissions, but it appears that the price-induced interfuel substitution is a main factor affecting CO2 emissions.

A Study on Characteristics of Rice Bran Oil as an Alternative Fuel in Diesel Engine(I) (디젤기관의 대체연료로서 미장유의 특성 연구(I))

  • 오영택;최승훈;김승원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2002
  • Lately, our world is faced with very serious problems related to the increased air pollution of the exhaust emissions from automobiles. In particular, the exhaust emissions of diesel engines are recognized as a main cause which strongly influence environment. Lots of researchers have attempted to develop various alternative fuels to reduce these harmful emissions in diesel engine. The purpose of this investigation is to evaluate the possibility of esterfied rice bran oil for diesel fuel substitution in a naturally aspirated D. 1. diesel engine, and also find means to reduce smoke emissions in esterfied rice bran oil combustion. The smoke emission of esterfied rice bran oil is reduced remarkably in comparison with commercial gas oil, that is, it was reduced approximately 58.2% at 2500rpm. But, power, torque and brake specific energy consumption didn't have no large differences. It was concluded that esterfied rice bran oil can utilize effectively as an alternative and renew- able fuel fur diesel engine.

Vegetable oils for diesel fuel substitutes (디젤기관의 대체연료로서의 식물유)

  • 오영택
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.72-92
    • /
    • 1996
  • 식물유, 어유 및 축산 폐기물을 포함한 동식물성 기름은 어느 연료든지 기관의 연료로서 사용 가능하지만, 이들 연료는 점도가 높고, 저휘발성이어서 착화지연기간동안에 가연성혼합기 생성이 어려워 저 NOx이며, 정숙한 운전이 사능할 뿐 아니라 경유정도의 열소비율 및 배기 매연농도로 디젤기관의 대체 연료로서의 충분한 가능성이 있는 연료임을 확인하였다. 그러나, 고점도에 의한 분무 특성의 악화에 기인한 분무입자의 증대로 미연소분에 의한 carbon deposit 및 piston ring stick 등이 문제점으로 지적되었다. 그러나, 이같은 문제점의 해결책으로 경질유와의 혼합, 에스테르 변환 및 연료의 가열등 여러 해결책을 제시하였고, 배기가스분석결과도 양호함을 확인하였다. 이같은 biomass 연료 일종인 식물유가 아무런 변화없이 이용되기 위해서는 고과급화, 단열 및 연소실의 적절한 설계가 필요할 것으로 생각된다. 따라서, 현재의 실황을 생각한다면 기존기관을 특별하게 개조함이 없이 사용을 전제로 할 때 식물유의 이용은 local 에너지로서, 생산, 전환 또는 이용기술의 개발과 동시에 화석에너지의 보충적인 에너지로 고려하는 것이 유효할 것으로 생각된다.

  • PDF

The Combustion Characteristics of Biodiesel Fuel as an Alternative Fuel for D.I. Diesel Engine (직접분사식 디젤기관에서 바이오디젤 연료의 연소특성)

  • Jang, S.H.;Suh, J.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.12-17
    • /
    • 2008
  • Biodiesel fuel(BDF) which is easily produced from vegetable oils such as soybean oil and rice bran oil can be effectively used as an alternative fuel in diesel engine. But biodiesel fuel can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. To investigate the combustion characteristics of biodiesel fuel as an alternative fuel for D.I. diesel engine, the experiments were carried out at the three-cylinder, four stroke D.I. diesel engine with T/C. Experimental parameters adopted a conventional diesel fuel and a blend of biodiesel fuel derived from soybean. As a result of experiments in a test engine, BSFC with blend of BDF resulted in higher than with diesel fuel. The ignition delay decreased with blend of BDF than with diesel fuel.

  • PDF

Combustion Characteristics of Biodiesel Fuel as an Alternative Fuel for a D.I. Diesel Engine(2) (직접분사식 디젤기관에서 바이오디젤 연료의 연소특성(2))

  • Jang, S.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.51-56
    • /
    • 2009
  • Recently, lots of researchers have been attracted to develop various alternative fuels in diesel engine. The use of biodiesel fuel(BDF) is an effective way of substituting diesel fuel in the long run. But biodiesel fuel can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. In this study, to investigate the combustion characteristics of biodiesel fuel as an alternative fuel for D.I. diesel engine, experiments were carried out at the three-cylinder, four stroke D.I. diesel engine with T/C. As a result, shorter ignition delays were observed for the biodiesel blend cases relative to the diesel oil. The pick value of premixed combustion for the rate of heat release is increased with decreasing C.F.W. temperature.

  • PDF

Study of Fuel Properties for Biodiesel Derived from Duck's Oil (오리기름으로부터 합성된 바이오디젤의 연료특성 연구)

  • Lim, Young-Kwan;Lee, Cheon-Ho;Jung, Choong-Sub;Yim, Eui-Soon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.653-658
    • /
    • 2010
  • Biodiesel is well known for an eco-friendly alternative fuel for petrodiesel. But biodiesel has a disadvantage since it is derived from expensive food resource. In this study, we synthesized the biodiesel from duck's oil which was food trash via transesterification under base catalyst. After analytic result of density, kinematic viscosity, cold temperature characteristics, lubricity and cetane number which were main fuel characteristics, this duck's biodiesel has enough potential to use as fuel except only domestic winter season.

Determination of Fuel Properties for Blended Biodiesel from Various Vegetable Oils (다양한 식물성오일로부터 생산된 바이오디젤의 혼합에 따른 연료특성 분석)

  • Lim, Young-Kwan;Jeon, Cheol-Hwan;Kim, Shin;Yim, Eui Soon;Song, Hung-Og;Shin, Seong-Cheol;Kim, DongKil
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.237-242
    • /
    • 2009
  • Various type of alternative fuel have been developed due to exhaustion of fossil fuel reserves and high oil price. Biodiesel is produced from the reaction of triglyceride, which is main component of animal fat and vegetable oil, and methanol by methanolysis as it is known for eco- friendly fuel for alternative petrodiesel. In this work, it was analyzed for the characteristics of the blended biodiesel with domestic petrodiesel according to blending ratio. Density, kinematic viscosity and flash point were increased with increasing the content of biodiesel. But the characteristic of blended biodiesel fuel were changed to aggravate in low temperature. Also, the derived cetane number(DCN) from IQT was increased by added biodiesel. Especially, the DCN of biodiesel from palm oil showed 71.26.

Characterization of NaX zeolite catalyst as the amount of KOH for the Biodiesel Production (NaX 제올라이트 촉매에서 KOH 담지량에 따른 바이오디젤 합성 특성)

  • Chang, Duk-Rye;Kim, Jin-Hyeok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.83-84
    • /
    • 2008
  • 바이오 디젤은 석유기반 연료들을 대신할 수 있는 대체연료일 뿐만 아니라 재생가능자원으로부터 얻을 수 있다는 장점을 가지고 있다. 바이오 디젤은 동 식물성 유지를 이용해서 알코올과 촉매 존재하에서 제조되며, 주로 KOH, NaOH 등 균질촉매를 이용하여 제조하는데 이는 폐수 발생이 많고 공정 비용이 많이 든다는 단점이 있다. 따라서 최근에는 폐기물 발생이 없고 촉매의 제거가 편리한 비균질촉매의 개발이 이루어지고 있다. 본 연구에서는 NaX 제올라이트 촉매에 KOH를 담지시켜 염기도의 증가에 따라 바이오디젤의 제조특성에 미치는 촉매특성을 조사해 보았다. NaX 제올라이트 촉매에 KOH 담지량이 증가와 반응시간이 증가함에 따라 바이오디젤 생성량은 증가하였다.

  • PDF