• 제목/요약/키워드: 디젤 노즐

검색결과 68건 처리시간 0.019초

디젤기관과 터보차저 싸이클 동기화에 의한 디젤기관의 성능 개선에 관한 연구 (A Study on the Improving Disel Performance by Means of Cyclic Synchronizing Power and the Geometrical Features of Turbocharging System)

  • 김창훈
    • 수산해양기술연구
    • /
    • 제33권3호
    • /
    • pp.241-247
    • /
    • 1997
  • 터보 노즐에 유동하는 가스 에너지의 변화와 그위상의 조정에 의하여 디젤엔진의 성능 개선 가능성을 검토 하였다. 그리고 디젤기관의 각실린더와 터빈 노즐 면적과 가스의 유동에 대한 동기화를 실시함으로써 엔진 성능 또한 개선할 수 있었다.

  • PDF

노즐특성이 Small HSDI 디젤엔진의 성능에 미치는 영향 (Study of Nozzle Characteristics on the Performance of a Small HSDI Diesel Engine)

  • 류명석
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.69-76
    • /
    • 2001
  • VCO nozzle is devised to minimize the HC emission and has been applied on some HSDI diesel engines. But it is not well reported whether VCO nozzle would be advantageous over SAC nozzle in a small HSDI diesel engine. In this paper it is presented that characteristics of VCO and SAC nozzle under common rail fuel injection system and their effects on the performance in a small HSDI diesel engine.

  • PDF

노즐 오리피스 형상 및 형상비가 디젤과 바이오디젤 연료의 노즐 내부 및 외부 유동특성에 미치는 영향 (Effect of Nozzle Orifice Shape and Nozzle Length-to-Diameter Ratio on Internal and External Flow Characteristics of Diesel and Biodiesel Fuel)

  • 박수한;서현규;이창식
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.264-272
    • /
    • 2007
  • The aim of this study is to investigate the effects of nozzle orifice shapes and the nozzle length-to-diameter ratio(L/D) on the nozzle cavitation formation inside the orifice and the external flow pattern. The nozzle used in this work was tested the taper orifice nozzle and the rectangular orifice nozzle which was made from the transparent acrylic acid resin. For studying the effect of the nozzle L/D ratio, it was used to three L/D ratios of 3.33, 10, and 20. The cavitation flow of nozzle was visualized by using the ICCD camera and optical system. This work revealed that the flow rate and discharge coefficient($C_d$) of the taper orifice nozzle was larger than those of the rectangular orifice nozzle at the same injection pressure. The cavitation flow was observed in the nozzle orifice at the low injection pressure and the breakup of liquid jet was promoted as the L/D ratio is decreased. The cavitation of biodiesel fuel was formed at the lower injection pressure than that of diesel fuel because of higher viscosity and density.

선박용 중속디젤엔진 연료분사노즐 해석 연구 (Study on Simulation of Fuel Injection Nozzle for Marine Medium Speed Diesel Engine)

  • 양영준
    • 한국기계가공학회지
    • /
    • 제12권3호
    • /
    • pp.41-47
    • /
    • 2013
  • This study was carried out to improve the design of fuel injection nozzle for marine medium speed diesel engine. For this purpose, fuel injection nozzle was modeled and simulated using CATIA V5R19 and FLUENT & MSC Nastran. Analyses of flow and heat transfer, respectively, were performed to find the optimal design of fuel injection nozzle. As the results, big pressure drop, which may lead to cavitation damage, was occurred at inlet of fuel injection hole with diameter 0.3mm. Furthermore, it was confirmed that the increase of mean temperature of fuel injection nozzle was almost a half in comparison with that of fuel injection nozzle tip.

디젤노즐의 분무 거동에 관한 연구 (A Study on Spray Distribution of Diesel Nozzles)

  • 송규근;오영택;안진근;김강출
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.120-127
    • /
    • 1997
  • A diesel engine is one of the major prime movers owing to its high thermal efficiency. But due to the recent attention for the environmental pollution, the emissions of diesel engine became a important problem. So it is needed to understand the characteristics of diesel spray injected into a combustion chamber. Because the diesel combustion is strongly controlled by a fuel spray injected into a combustion chamber. This study provides the informations for the diesel spray with the atmospere condition in combustion chamber by PMAS. As the result, the spray tip penetration and angle is increased with the increase of spray pressure and nozzle diameter. And the comparisions between the measured outline of the free-spray and the calculated model have been conducted and obtained the resonable results.

  • PDF

디젤노즐의 내부구조가 분무특성에 미치는 효과 (Effect of Diesel Nozzle Internal Geometry on the Spray Characteristics)

  • 배종욱;안수길
    • 대한기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.1238-1249
    • /
    • 1989
  • 본 연구에서는 분무체적에 영향을 미치는 분사차압, 주위공기밀도, 노즐공의 직경과 분무각을 변수로 하여 상관관계식을 이론적으로 유도하고 이를 근거로 하여 분 무의 평균공연비 증대를 향상시키는 방안을 제시하였다.

함정용 디젤엔진의 노즐 직경 변화가 매연 발생에 미치는 영향 (Effect of nozzle diameter on the reduction of smoke emission from naval ship diesel engines)

  • 손민수;최재성;조권회
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.180-184
    • /
    • 2016
  • 국제기구 및 각국의 정부는 인간의 건강 및 환경을 보호하기 위해 선박의 배기가스 규제를 엄격히 적용하고 있다. 함정은 이러한 배기가스 규제 적용 대상에서 제외되고 있지만 최근 미국, 영국 등 일부 선진국에서는 함정으로 야기되는 대기환경오염을 방지하기 위해 전기추진체계 시스템을 도입하는 등 다양한 개선 방법을 적용하고 있다. 본 연구에서는 함정용 디젤엔진의 매연 발생 문제 해결을 위해 노즐 직경을 축소 변화시키고 분사압력을 증가시켜 배기가스 발생량 측정과 오염물질조사 방법론을 이용해 저부하시 매연 문제가 개선된 것을 확인하였다. 동시에 그 영향을 유량방정식과 함정시험평가서를 통해 노즐 직경 축소 결과 연료 소비량이 감소되는 것을 확인하였다.

인젝터 노즐 형상이 노즐 내부 유동 및 출구 특성에 미치는 영향 (Influences of Injector Nozzle Shape on Nozzle Internal Flow and Outlet Characteristics)

  • 김창현;이강수;박재인;백제현
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.108-116
    • /
    • 2013
  • Diesel engine injector is used for spraying the fuel into the cylinder chamber. Complex phenomenon like cavitation occurs from small scale domain, highly pressurized condition and rapid injection. Flow inside the nozzle affects the whole engine performance including combustion and exhaust, therefore understanding the flow inside the injector nozzle is very important. In this paper, cylindrical and convergent-divergent nozzles are suggested for nozzle types and their influences on nozzle internal flow and nozzle outlet characteristics will be analyzed by changing their outlet diameters.

고압 디젤 인젝터 노즐 홀 수가 연료 분무 및 배기 특성에 미치는 영향 (Effect of Nozzle Hole Number on Fuel Spray and Emission Characteristics of High Pressure Diesel Injector)

  • 전문수
    • 한국분무공학회지
    • /
    • 제17권4호
    • /
    • pp.210-215
    • /
    • 2012
  • This paper This paper presents effect of nozzle hole number on spray characteristics and engine performance. Experiments were conducted to measure spray penetration and SMD distributions using a spray visualization system and PDPA (phase Doppler particle analyzer) system. In addition, engine performance and emission characteristics were measured using a single cylinder engine and emssion measurement systems. Results showed that 8-hole-injector exhibits improved spray performances. Furthermore, soot emission was decreased with 8-hole-injector, compared to that of 6-hole-injector.

정상류 조건에서의 디젤 연료 분사 노즐내의 유동가시화 (Visualization of the Flow in a Diesel Injection Nozzle In case of the Steady Flow Condition)

  • 김장헌;송규근
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.49-56
    • /
    • 1999
  • The effects of the internal flow in a D.I. Diesel injection nozzle on the atomization of a spray were analyzed experimentally. Flow visualization studies were made using a transparent acrylic model nozzle as a diesel nozzle . Water instead of disel fuel was used as the injection liquid. The geometry of the model nozzle was scaled up 10 times of the actual nozzle and the injection pressure for the model nozzle was adjusted so as to achieve a Reynolds number at the discharge hole that was the same as the actual nozzle. Experimental results show that when the needle lift was small, the high turbulence in the sac chamber generated by the high velocity seat flow made the spread angle of the spray plume large. Cavitation, which arose from the sac chamber, makes the spread angle of the spray plume large but the discharge coefficient small.

  • PDF