• Title/Summary/Keyword: 디젤오염

Search Result 224, Processing Time 0.028 seconds

Bioremediation of Diesel-Contaminated Soils by Natural Attenuation, Biostimulation and Bioaugmentation Employing Rhodococcus sp. EH831 (Natural attenuation, biostimulation 및 Rhodococcus sp. EH831을 이용한 bioaugmentation에 의한 디젤 오염 토양의 정화)

  • Lee, Eun-Hee;Kang, Yeon-Sil;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.86-92
    • /
    • 2011
  • Three bioremediation methods, natural attenuation (NA), biostimulation (BS) and bioaugmentation (BA) were applied to remediate diesel-contaminated soil, with their remediation efficiencies and soil microbial activities compared both with and without surfactant (Tween 80). BA treatment employing Rhodococcus sp. EH831 was the most effective for the remediation of diesel-contaminated soil at initial remediation stage. On the addition of surfactant, no significant effect on the remediation performance was observed. A negative correlation was found between the dehydrogenase activity (DHA) and residual concentration of total petroleum hydrocarbons (TPHs) at below 20,000 mg-$TPHs{\cdot}kg$-dry $soil^{-1}$, as follows: DHA (${\mu}g$-TPF(Triphenylformazan)${\cdot}g$-dry $soil^{-1}\;d^{-1}$) = -0.02 ${\times}$ TPHs concentration (mg-$TPHs{\cdot}kg$-dry $soil^{-1}$) + 425.76 (2500 ${\leq}$ TPHs concentration ${\leq}$ 20000, p < 0.01).

Effect of Environmental Parameters on the Degradation of Petroleum Hydrocarbons in Soil (환경인자가 토양내 석유계탄화수소의 분해에 미치는 영향)

  • 황의영;남궁완;박준석
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.85-96
    • /
    • 2000
  • The purpose of this study was to Investigate the effect of environmental conditions on the degradation of total petroleum hydrocarbons(TPH) in soil. The soil used for this study was sandy loam. Target contaminant, diesel oil, was spiked at 10.000mgTPH/kg dry soil. Moisture content was controlled to 50%, 70%, and 90% of field capacity of the soil. Temperature was controlled to $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$. The active degradation of TPH was observed at the moisture contents of 50% and 70% of field capacity, and temperature of $10^{\circ}C$ to $30^{\circ}C$. Degradation rate of n-alkanes was about two times greater than that of TPH. Volatilization loss of TPH was about 2% of initial concentration. Biocide control and no aeration experiments indicated that removal of TPH was primarily occurred by biodegradation under aerobic condition.

  • PDF

A Study on Determining Economical Speed of Diesel Freight Locomotive (화물열차의 경제속도 결정에 관한 연구)

  • Kim, Kwang-Tae;Kim, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.294-299
    • /
    • 2012
  • Rail transport has been considered an environmental-friendly transport mode compared with other transport modes such as ship, truck, and aircraft. However, air pollutions emitted by diesel locomotives have emerged as social issues. In addition, the railway industry may not be able to avoid a duty of alleviating greenhouse gases emission owing to the Korean government policies for green growth which is an economic paradigm that simultaneously pursues growth and environmental improvement. Moreover, rising oil prices has burdened a train operating company. The purpose of this paper is to develop a methodology of determining an economical speed of diesel freight locomotive from the viewpoint of the train operating company. In the methodology, we first define an operational cost function based on various cost factors and then suggest formula to calculate an economical speed of diesel freight locomotive. To estimate the influence of cost factors such as diesel price, carbon taxes, and time costs on the speed of diesel freight locomotive, sensitivity analysis was conducted.

A Study on Cost Comparison between AMP and Bunker fuel (선박의 육상전력과 선박연료비용 비교분석에 관한 연구)

  • Park, Young-Tae;Kang, Hyo-Won
    • Korea Trade Review
    • /
    • v.43 no.6
    • /
    • pp.93-112
    • /
    • 2018
  • Lately, various nations including the U.S. and China aim to decrease air pollutants in port areas. As the number of vessels as ports increases, the volume of cargo and air pollutants emitted from vessels are also increasing. Therefore, the social responsibility of port construction, shipping companies and terminal operators is becoming important. Alternate Maritime Power(AMP) is an anti-pollution measure which helps in reducing air pollution generated from diesel generators by using shore electric power. This study compares the AMP tariff and Bunk Fuel tariff at berth in order to determine how to operate an efficient offshore power supply facility in Gwangyang Port.

A Study on Treatment of Soils Contaminated by Diesel and Kerosene Using Hydrogen Peroxide Catalyzed by Naturally Occurring Iron Minerals (디젤과 등유로 오염된 토양의 철광석으로 촉매화된 과수를 이용한 처리에 관한 연구)

  • Choi, Jin-Ho;Kim, Sang-Dae;Moon, Sei-Ki;Kong, Sung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.24-29
    • /
    • 1999
  • Naturally-occurring iron minerals, goethite, magnetite, and hydrogen peroxide were used to catalyze and initiate Fenton-like oxidation of silica sand contaminated with mixture of diesel and kerosene in batch system. Optimal reaction conditions were investigated by varying pH(3, 7), $H_2O_2$ concentration(0%, 1%, 7%, 15%, 35%), initial contaminant concentration(0.2, 0.5, 1.0 g-mixture of diesel and kerosene/ kg-soil), and iron mineral contents(1, 5, and 10 wt % magnetite or goethite). Contaminant degradations in silica sand-iron mineral-$H_2O_2$ systems were identified by determining total petroleum hydrocarbon(TPH) concentration. The optimal pH of the system was 3. The system which iron minerals were the only iron source was more efficient than the system with $FeSO_4$ solution due to lower $H_2O_2$ consumption. In case of initial contaminant concentration of 1g-contaminant/kg-soil with 5 wt % magnetite, addition of 0%, 1%, 7%, 15%, and 35% of $H_2O_2$ showed 0%, 24.5%, 44%, 52%, and 70% of TPH reduction in 8 days, respectively. When the mineral contents were varied 0, 1, 5, and 10wt%, removal of contaminants were 0%, 33.5%, 50%, and 60% for magnetite and 0%, 29%, 41%, and 53% for goethite, respectively. Reaction of magnetite system showed higher degradation than that of goethite system due to dissolution of iron and mixed presence of iron(II) and iron(III); however, dissolved iron precipitated on the surface of iron mineral and seemed to cause reducing electron transfer activity on the surface and quenching $H_2O_2$. The system using goethite has better treatment efficiency due to less $H_2O_2$ consumption. When cach system was mixed by shaker, removal of contaminants increased by 41% for magnetite and 30% for goethite. Results of this study showed catalyzed $H_2O_2$ system made in-situ treatment of soil contaminated with petroleum possible without addition of iron source since natural soils generally contain iron minerals such as magnetite and goethite.

  • PDF

A Study on Remediation Method of Diesel-Contaminated Railroad Soil using $TiO_2$-MMT ($TiO_2$-MMT를 이용한 디젤오염 철도토양의 개선방안에 관한 연구)

  • Yang, Young-Min;Huh, Hyun-Sue;Lee, Jae-Young;Lee, Cheul-Kyu;Jeon, Yu-Mi
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2870-2874
    • /
    • 2011
  • Soil pollution around railroad has been occurred mainly by diesel and lubricant oil, which is difficult to treat due to high carbon number. In this study, we investigated the feasibility of inorganic-inorganic nanohybrid photo-catalyst for the remediation of diesel-contaminated railroad soil. Generally, the $TiO_2$ nanoparticle easily removes organic pollutants due to photo and natural clay of layer structure. Also, montmorillonite (MMT) have an excellent absorption property with organic component. So, we prepared $TiO_2$ pillared MMT nanohybrid photo-catalyst as a chemical oxidant through the integration of theses advantage. As a result, the removal efficiency of diesel was more than 45% at a laboratory-scale test with diesel concentration and the amount of $TiO_2$-MMT. In future, we will improve the removal efficiency of diesel to optimize experimental parameters and apply the field soil The remediation method using photo-catalyst can be used to clean up the railroad soil polluted with high concentration instead of common methods such as soil washing, bioremediation, etc..

  • PDF

흑연화를 통한 폐 수트의 리튬이온전지용 도전재로의 재활용에 관한 연구

  • Kim, Han-Bin;Choe, Jae-Hyeok;Lee, Won-Ju;Kim, Dae-Yeong;Gang, Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.138-138
    • /
    • 2018
  • 선박을 통한 해상수송은 세계 무역의 80% 이상을 차지하고 있으며, 대부분의 선박은 저질중유의 연소로부터 추진력을 발생시키는 디젤 엔진을 원동력으로 사용하고 있다. 이러한 디젤 엔진은 연소의 부산물로 매년 백만 톤 이상의 오염물질을 방출하는데, 그 주성분은 탄소로 이루어져 있고 고온 열분해 또는 압축 점화 엔진의 작동 부산물들이 소량 포함되어 있다. 이에 본 연구에서는 선박으로부터 배출된 폐 수트를 리튬이온전지용 도전재로 활용하기 위한 독특한 방법이 제안되었다. 실험에 사용된 폐 수트는 운항중인 컨테이너선으로부터 수집되었으며, 수집된 폐 수트는 탄소 성분 이외의 불순물을 제거하고 흑연화 정도를 개선시키기 위해 $2,000^{\circ}C$로 열처리되었다. 열처리된 폐 수트의 모폴로지를 확인하기 위해 투과전자현미경을 이용하여 그 형상을 관찰하였으며, 이를 통해 폐 수트의 일차 입자는 지름이 약 70-100 nm 정도인 양파껍질 모양의 탄소(carbon nano-onion)로 형성된다는 것이 확인되었다. 또한, XRD, RAMAN 분광법 및 BET 분석 결과를 통해, 열처리된 폐 수트가 결정성이 있는 흑연으로 재형성되었으며 비표면적은 일반적으로 사용되는 활물질에 비해 약간 더 높다는 것을 확인할 수 있었다. 한편, 이러한 특성은 리튬이온전지용 도전재로 활용될 수 있는 가능성을 보여주었고, 이는 전기화학적 정전류 충전 및 방전 테스트를 통해 그 성능이 확인되었다. 일반적으로 사용되는 도전재의 테스트 결과와 폐 수트를 도전재로 사용한 테스트 결과를 Fig. 1에 나타내었다. 이상의 실험 결과들을 미루어 볼 때, 선박으로부터 배출된 폐 수트가 리튬전지용 음극 활물질 및 도전재로 재활용될 수 있을 것으로 사료된다.

  • PDF

Feasibility Study on Remediation for Railroad-contaminated Soil with Waste-lubricant (윤활유 유래 철도 오염토양의 정화방법 연구)

  • Park, Sung-Woo;Shin, Min-Chul;Jeon, Chil-Sung;Baek, Ki-Tae;Lee, Jae-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.30-35
    • /
    • 2008
  • In this study, the feasibility of soil washing, chemical oxidation and sonication was investigated to treat lubricantcontaminated railroad soil. Tergitol, a non-ionic surfactant, was used as a washing agent with or without iso-propyl acohol as a cosolvent. However, it was not effective to remove lubricant from soil even though tergitol was the most effective washing agent for diesel-contaminated soil. The cosolvent reduced the overall washing efficiency. Chemical oxidation removed 30% of lubricant from contaminated soil. Soil washing after chemical oxidation extracted additionally 16-17% of lubricant. Sonication enhanced-soil washing showed enhanced overall efficiency of soil washing. Lubricant-contaminated soil should be remediated by the other technology used for diesel-contaminated soil.

Evaluation of Extraction Mode for SVE Process by On-Line Monitoring System (온라인 모니터링에 의한 디젤오염토양의 토양증기추출 공정시 추출모드 평가)

  • Park, Joon-Seok;Kim, Seung-Ho;Park, Young-Goo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.90-96
    • /
    • 2003
  • This study was performed to evaluate effect of extraction mode on SVE efficiency for fuel-contaminated soil. A gas station was selected for this study. As a result of pressure test in well head, soil texture of contaminated site under the gas station was very different from site to site. SVE system was operated in intermittent mode (1hr extraction / 3hr rest) or continuous mode. Capacity of air blower was $1m^3/min$. Extration mode test was conducted in two severe contaminated sites. In both two sites, cumulative TPHgas mass of intermittent extraction mode was higher than that of continuous mode. Considering long term operation of SVE in a field, in general, it was thought that intermittent extraction mode was effective in view of vaporized TPHgas mass and electrical cost.

  • PDF

Effects of the Characteristics of Exhaust Emissions by Using Bio Fuel in Marine Diesel Engine (선박디젤기관에 있어서 바이오연료가 배기배출물특성에 미치는 영향)

  • Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.103-108
    • /
    • 2015
  • Recent global warming has been recognized as the world economy development from fossil fuel use is the culprit. This study was reduce the fossil fuel has been developed in a number of alternative energy, As a fuel that can be produced in our country is a biofuel. Biofuels is a sustainable fuel having economically benefits and decreasing environmental pollution problems caused due to fossil fuel. A lot of research is progressing about the conversion of diesel biofuel as renewable clean energy. In this experiment were remodel the institution that has been used in fishing engine again produced an experimental apparatus were installed directly, were studied using various bio fuel like to help the economically and environmentally sound operation of the vessel. rapeseed oil, soybean oil, comprehensively analyzing the results the effects of the exhaust emission characteristics of the waste rapeseed oil is available in a marine engine with similar physical and chemical components of the fuel, and the fuel consumption ratio, NOx is slightly increased, but soot was confirmed a tendency to decrease much.