Browse > Article

Bioremediation of Diesel-Contaminated Soils by Natural Attenuation, Biostimulation and Bioaugmentation Employing Rhodococcus sp. EH831  

Lee, Eun-Hee (Department of Environmental Science and Engineering, Ewha Womans University)
Kang, Yeon-Sil (Department of Environmental Science and Engineering, Ewha Womans University)
Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Microbiology and Biotechnology Letters / v.39, no.1, 2011 , pp. 86-92 More about this Journal
Abstract
Three bioremediation methods, natural attenuation (NA), biostimulation (BS) and bioaugmentation (BA) were applied to remediate diesel-contaminated soil, with their remediation efficiencies and soil microbial activities compared both with and without surfactant (Tween 80). BA treatment employing Rhodococcus sp. EH831 was the most effective for the remediation of diesel-contaminated soil at initial remediation stage. On the addition of surfactant, no significant effect on the remediation performance was observed. A negative correlation was found between the dehydrogenase activity (DHA) and residual concentration of total petroleum hydrocarbons (TPHs) at below 20,000 mg-$TPHs{\cdot}kg$-dry $soil^{-1}$, as follows: DHA (${\mu}g$-TPF(Triphenylformazan)${\cdot}g$-dry $soil^{-1}\;d^{-1}$) = -0.02 ${\times}$ TPHs concentration (mg-$TPHs{\cdot}kg$-dry $soil^{-1}$) + 425.76 (2500 ${\leq}$ TPHs concentration ${\leq}$ 20000, p < 0.01).
Keywords
Natural attenuation; biostimulation; bioaugmentation; Rhodococcus sp.; soil contamination;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Bento, F. M., A. O. Camargo, B. C. Okeke, and W. T. Frankenberger. 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation, and bioaugmentation. Bioresour. Technol. 96: 1049-1055.   DOI   ScienceOn
2 Beck, A. J. and K. C. Jones. 1995. Limitations to the in situ remediation of soils contaminated with organic chemicals in relation to the potential to achieve clean-up criteria. In: Van den Brink, W. J., Bosman, R., Arendt, F. (eds) Contaminated soil '95. Kluwer, Dordrecht, The Netherland, pp. 327-336.
3 Baek, K.-H., B.-D. Yoon, B.-H. Kim, D.-H. Cho, I.-S. Lee, H.-M. Oh, and H.-S. Kim. 2007. Monitoring of microbial diversity and activity during bioremediation of crude oil-contaminated soil with different treatments. J. Microbiol. Biotechnol. 17: 67-73.
4 Bastida, F., A. Zsolnay, T. Hernández, and C. Carcía. 2008. Review: Past, present and future of soil quality indices: A biological perspective. Geoderma. 147: 159-171.   DOI
5 Toress, L. G., N. Rojas, G. Bautista, and R. Iturbe. 2005. Effect of temperature, and surfactant's HLB and dose over the TPH-diesel biodegradation process in aged soil. Process Biochem. 40: 3296-3302.   DOI   ScienceOn
6 Ueno, A., Y. Ito, Y. Yamamoto, I. Yumoto, and H. Okuyama. 2006. Bacterial community changes in diesel-oil-contaminated soil microcosms biostimulated with Luria-Bertani medium or bioaugmented with a petroleum-degrading bacterium Pseudomonas aeruginosa strain WatG. J. Basic Microbiol. 46: 310-317.   DOI   ScienceOn
7 Vázquez, S., B. Nogales, L. Ruberto, E. Hernández, J. Christie -Oleza, A. Lo Balbo, R. Bosch, J. Lalucat, and W. Mac Cormack. 2009. Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil. Microb. Ecol. 57: 598-610.   DOI   ScienceOn
8 Mulligan, C. N., R. N. Yong, and B. F. Gibbs. 2001. Surfactant- enhanced remediation of contaminated soil: a review. Eng. Geol. 60: 371-380.   DOI   ScienceOn
9 Tabatabai, M. A. 1982. Soil enzymes. In: Page, A. L., Miller, R. H., Keeney, R. (eds), Methods of Soil Analysis, Part 2 - Chemical and Microbiological Properties, pp. 903-947.
10 Tongarun, R., E. Luepromchai, and A. S. Vangnai. 2007. Natural attenuation, biostimulation, and bioaugmentation in 4-Chloroaniline-contaminated soil. Curr. Microbiol. 56: 182- 188.
11 Paria, S. 2008. Surfactant-enhanced remediation of organic contaminated soil and water. Adv. Colloid Interface Sci. 138: 24-58.   DOI   ScienceOn
12 Prak, D. J. L. and P. H. Pritchard. 2002. Degradation of polycyclic aromatic hydrocarbons dissolved in Tween 80 surfactant solutions by Sphingomonas paucimobilis EPA 50. Can. J. Microbiol. 48: 151-158.   DOI   ScienceOn
13 Lee, E.-H., H. W. Ryu, and K. S. Cho. 2009. Removal of benzene and toluene in polyurethane biofilter immobilized with Rhodococcus sp. EH831 under transient loading. Bioresour. Technol. 100: 5656-5663.   DOI   ScienceOn
14 Margesin, R., M. Hämmerle, and D. Tscherko. 2007. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: Effects of hydrocarbon contamination, fertilizers, and incubation time. Microb. Ecol. 53: 259-269.   DOI   ScienceOn
15 Margesin, R., D. Labbe, F. Schinner, C. W. Greer, and L. G. Whyte. 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl. Environ. Microbiol. 69: 3085-3092.   DOI   ScienceOn
16 Margesin, R. and F. Schinner. 1997. Laboratory bioremediation experiments with soil from a diesel-oil contaminated site-significant role of cold-adapted microorganisms and fertilizers. J. Chem. Tech. Biotechnol. 70: 92-98.   DOI   ScienceOn
17 Volkering, F., A. M. Breure, and W. H. Rulkens. 1998. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8: 401-417.
18 Chu, H., X. Lin, T. Fujii, S. Morimoto, K. Yagi, J. Hu, and J. Zhang. 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol. Biochem. 39: 2971-2976.   DOI   ScienceOn
19 Devinny, J. and S. H. Chang. 2000. Bioaugmentation for soil bioremediation, In: Wise, D. L., Trantolo, D. J. (eds) Bioremediation of contaminated soils, Marcel Dekker, New York, pp. 465-488.
20 Wurdemann, H., N. C. Lund, and G. Gudehus. 1995. Assessment of a biological in situ remediation. In: Hinchee, R. E., Miller, R.N., Johnson, P. C. (eds) In situ aeration: air sparging, bioventing, and related remediation processes. Battelle Press, Columbus, USA, pp. 237-247.
21 Mamilov, A. S. and O. M. Dilly. 2007. Microbial characteristics during the initial stages of litter decomposition in forest and adjacent cropland soil. Ecol. Eng. 31: 147-153.   DOI   ScienceOn
22 Sarkar, D., M. Ferguson, R. Datta, and S. Birnbaum. 2005. Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Pollut. 136: 187-195.   DOI   ScienceOn
23 Stres, B., T. Danev i , L. Pal, M. M. Fuka, L. Resman, S. Leskovec, J. Hacin, D. Stopar, I. Mahne, and I. Mandic- Mulec. 2008. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol. Ecol. 66: 110-122.   DOI   ScienceOn
24 Luthy, R. G., D. A. Dzombak, C. A. Peters, S. B. Roy, A. Ramaswami, D. V. Nakles, and B. R. Nott. 1994. Remediating tar-contaminated soils at manufactured gas plant sites. Environ. Sci. Technol. 28: A266-A276.   DOI
25 Lu, M., Z. Zhang, S. Sun, Q. Wang, and W. Zhong. 2009. Enhanced degradation of bioremediation residues in petroleum- contaminated soil using a two-liquid-phase bioslurry reactor. Chemosphere 77: 161-168.   DOI   ScienceOn
26 Lee, M., M. K. Kim, I. Singleton, M. Goodfellow, and S. T. Lee. 2006. Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. J. Appl. Microbiol. 100: 325-333.   DOI   ScienceOn
27 Li, H., Y. Zhang, I. Kravchenko, H. Xu, and C. G. Zhang. 2007. Dynamic changes in microbial activity and community structure during biodegradation of petroleum compounds: A laboratory experiment. J. Environ. Sci. 19: 1003- 1013.   DOI   ScienceOn
28 Li, H., Y. Zhang, C. G. Zhang, and G. X. Chen. 2005. Effect of petroleum-containing wastewater irrigation on bacterial diversities and enzymatic activities in a paddy soil irrigation area. J. Environ. Qual. 34: 1073-1080.   DOI
29 Huang, H., S. Zhang, N. Wu, L. Luo, and P. Christie. 2009. Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biol. Biochem. 41: 726-734.   DOI   ScienceOn
30 Gallego, J. L. R., J. Lpredo, J. F. Llamas, F. Vazquez, and J. Sanchez. 2001. Bioremediation of diesel-contaminated soils: Evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12: 325-335.   DOI   ScienceOn
31 Lai, C.-C., Y.-C. Huang, Y.-H. Wei, and J.-C. Chang. 2009. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J. Hazard. Mater. 167: 609- 614.   DOI
32 Lee, E.-H., J. Kim, K. S. Cho, Y. G. Ahn, and G. S. Hwang. 2010. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831. Environ. Sci. Pollut. Res. 17: 64-77.   DOI   ScienceOn
33 Lee, E.-H., S. H. Lee, and K. S. Cho. 2011. Bacterial diversity dynamics in a long-term petroleum-contaminated soil. J. Environ. Sci. Health Part A. 46: 281-290.
34 Christofi, N. and I. B. Ivshina. 2002. A reviwe: Microbial surfactants and their use in field studies of soil remediation. J. Appl. Microbiol. 93: 915-929.   DOI   ScienceOn