• Title/Summary/Keyword: 디젤분해

Search Result 94, Processing Time 0.024 seconds

The In-Situ Ozone Oxidative Remediation Potential of Diesel Fuel-contaminated Soil (디젤오염토양에 대한 지중 오존산화처리 적용 가능성)

  • 유도윤;신응배;배우근
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.3-15
    • /
    • 1999
  • This paper includes the basic experimental results performed for developing an innovative and technologically feasible process wherein gaseous ozone, a powerful oxidant. is injected directly into vadose zone by which in-situ chemical degradation of semi- or, non-volatile petroleum product such as diesel fuel is derived. As ozone gas injected continuously(50mL/min, 119.0$\pm$6.1mg/L) into soil packed columns artificially contaminated with diesel fuel(initial concentration 1,485mg-DRO/kg/soil), the removal rates at the inlet and outlet point of 14hrs-operated column are 87.9% and 100.0%, respectively. On the other hand, soil vapor extraction system showed less than 30% of removal rates of residual diesel both at the inlet and outlet samples under the same experimental conditions which confirms the limited treatability of SVE in diesel contaminated soil.

  • PDF

Bioremediation of Oil-Contaminated Soil Using an Oil-Degrading Rhizobacterium Rhodococcus sp.412 and Zea mays. (유류 분해 근권세균 Rhodococcus sp. 412와 옥수수를 활용한 유류 오염 토양의 정화)

  • Hong, Sun-Hwa;Park, Hae-Lim;Ko, U-Ri;Yoo, Jae-Jun;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.150-157
    • /
    • 2007
  • The advanced bioremediation of diesel-contaminated soil through the exploration of bacterial interaction with plants was studied. A diesel-degrading rhizobacterium, Rhodococcus sp.412, and a plant species, Zea mays, having tolerant against diesel was selected. Zea mays was seeded in uncontaminated soil or diesel-contaminated soil with or without Rhodococcus sp. 412. After cultivating for 30 days, the growth of Zea mays in the contaminated soil inoculated with Rhodococcus sp. 412 was better than that in the contaminated soil without the bacterium. The residual diesel concentrations were lowered by seeding Zea mays or inoculating Rhodococctis sp. 412. These results Indicate that the simultaneous use of Zea mays and Rhodococcus sp. 412 can give beneficial effect to the remediation of oil-contaminated soil. Bacterial community was characterized using a 16S rDNA PCR and denaturing gradient gel electrophoresis (DGGE) fingerprinting method. The similarities of DGGE fingerprints were $20.8{\sim}39.9%$ between the uncontaminated soil and diesel contaminated soil. The similarities of DGGE fingerprints were $21.9%{\sim}53.6%$ between the uncontaminated soil samples, and $31.6%{\sim}50.0%$ between the diesel-contaminated soil samples. This results indicated that the structure of bacterial community was significantly influence by diesel contamination.

Experimental study of NOx reduction in marine diesel engines by using wet-type exhaust gas cleaning system (선박용 디젤엔진의 NOx를 저감하기 위한 습식 배기가스 처리기술 적용에 관한 실험적 연구)

  • Ryu, Younghyun;Kim, Taewoo;Kim, Jungsik;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.216-221
    • /
    • 2017
  • Diesel engines have the highest brake thermal efficiency among internal combustion engines. Therefore, they are utilized in medium and large transportation vehicles requiring large amounts of power such as heavy trucks, ships, power generation systems, etc. However, diesel engines have a disadvantage of generating large quantities of nitrogen oxides during the combustion process. Therefore, the authors tried to reduce the amount of nitrogen oxides in marine diesel engines using a wet-type exhaust gas cleaning system utilizing the undivided electrolyzed seawater method. In this method, electrolyzed seawater in injected into the harmful gas discharge from the diesel engine using real seawater. The authors investigated the reduction of NO and NOx from the pH value, available chlorine concentration, and the temperature of electrolyzed seawater. The results of this experiment indicated that when the electrolyzed seawater is acidic, the NO oxidation rate in the oxidation tower is higher than that when the electrolyzed seawater has a neutral pH. Likewise, the NO oxidation rate increased with the increase in concentration of chlorine. Further, it was confirmed that the electrolyzed seawater temperature had no effect on the NO oxidation rate. Thus, the NOx exhaust emission value produced by the diesel engine was reduced by means of electrolyzed seawater treatment.

Process Design and Simulation of Fast Pyrolysis of Brown Seaweed (갈조류 급속열분해 공정의 모사와 설계)

  • Brigljevic, Boris;Woo, Hee Chul;Liu, Jay
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.435-440
    • /
    • 2017
  • Fast pyrolysis of third generation biomass, including micro- and macroalgae for biofuel production has recently been studied and compared experimentally to first- and second-generation biomass. Compared to microalgae, however, process design and simulation study of macroalgae for scale-up has been rare in literature. In this study, we designed and simulated an industrial scale process for producing diesel range biofuel from brown algae based on bench scale experimental data of fast pyrolysis using a commercial process simulator. During process design, special attention was paid to the process design to accommodate the differences in composition of brown algae compared to terrestrial biomass. The entire process of converting 380,000 tonnes of dry brown algae per year into diesel range biofuel was economically evaluated and the minimum (diesel) selling price was also estimated through techno-economic analysis.

Characterization of Heavy Metal Tolerant and Plant Growth-Promoting Rhizobacteria Isolated from Soil Contaminated with Heavy Metal and Diesel (중금속 및 디젤 오염 토양에서 분리한 중금속 내성 식물 생장 촉진 근권세균의 특성)

  • Lee, Soo Yeon;Lee, Yun-Yeong;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.413-424
    • /
    • 2021
  • In order to enhance rhizoremediation performance, which remediates contaminated soils using the interactions between plants and microorganisms in rhizosphere, it is required to develop effective microbial resources that simultaneously degrade contaminants and promote plant growth. In this study, heavy metal-resistant rhizobacteria, which had been cultivated in soils contaminated with heavy metals (copper, cadmium, and lead) and diesel were isolated from rhizospheres of maize and tall fescue. After that, the isolates were qualitatively evaluated for plant growth promoting (PGP) activities, heavy metal tolerance, and diesel degradability. As a result, six strains with heavy metal tolerance, PGP activities, and diesel degradability were isolated. Strains CuM5 and CdM2 were isolated from the rhizosphere soils of maize, and were identified as belonging to the genus Cupriavidus. From the rhizosphere soils of tall fescue, strains CuT6, CdT2, CdT5, and PbT3 were isolated and were identified as Fulvimonas soli, Cupriavidus sp., Novosphingobium sp., and Bacillus sp., respectively. Cupriavidus sp. CuM5 and CdM2 showed a low heavy metal tolerance and diesel degradability, but exhibited an excellent PGP ability. Among the six isolates, Cupriavidus sp. CdT2 and Bacillus sp. PbT3 showed the best diesel degradability. Additionally, Bacillus sp. PbT3 also exhibited excellent heavy metal tolerance and PGP abilities. These results indicate that the isolates can be used as promising microbial resources to promote plant growth and restore soils with contaminated heavy metals and diesel.

Effect of Environmental Parameters on the Degradation of Petroleum Hydrocarbons in Soil (환경인자가 토양내 석유계탄화수소의 분해에 미치는 영향)

  • 황의영;남궁완;박준석
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.85-96
    • /
    • 2000
  • The purpose of this study was to Investigate the effect of environmental conditions on the degradation of total petroleum hydrocarbons(TPH) in soil. The soil used for this study was sandy loam. Target contaminant, diesel oil, was spiked at 10.000mgTPH/kg dry soil. Moisture content was controlled to 50%, 70%, and 90% of field capacity of the soil. Temperature was controlled to $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$. The active degradation of TPH was observed at the moisture contents of 50% and 70% of field capacity, and temperature of $10^{\circ}C$ to $30^{\circ}C$. Degradation rate of n-alkanes was about two times greater than that of TPH. Volatilization loss of TPH was about 2% of initial concentration. Biocide control and no aeration experiments indicated that removal of TPH was primarily occurred by biodegradation under aerobic condition.

  • PDF

Lab-Scale Air/Bio-Sparging Study to Remediate Diesel-Contaminated Soil and Groundwater : The Effect of Air Injection Rate and Pattern (디젤오염 토양 및 지하수 복원을 위한 공기주입정화법 실험실 연구 : 공기주입량과 공기주입방식의 영향)

  • Chang, Soon-Woong;Lee, Si-Jin;Cho, Su-Hyung;Yoon, Jun-Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.10-17
    • /
    • 2006
  • Laboratory-scale two-dimensional aquifer physical model studies were conducted to assess the effect of air injection rate and air injection pattern on the removal of disel contaminated soil and groundwater by air/bio-sparging. The experimental results were represented that the optimal conditions in this experiment were as air injection rate of 1,000 ml/min and pulsed air injection pattern(15 min on/off). The results of the TPH reduction, DO consumption and $CO_2$ production indicate the effective biodegradation evidence of diesel. Based on our results, The minimal $O_2$ supply and pulsed air injection pattern could effectively enhance the diesel removal and the pulsing air injection had effect on oxygenation in this system. Thus, the cost of operating air/bio-sparging system will be reduced if optimal air injection rate and pulsed air injection pattern are applied to remediate contaminants.

A Study on Combustion and Emission Characteristics of a Diesel Engine Fuelled with Pyrolysis Oil-Ethanol and Pilot Diesel (바이오원유-에탄올/파일럿 디젤유 이종연료 혼소를 통한 디젤엔진의 연소 및 배출가스 특성에 관한 연구)

  • Kim, Min-Jae;Lee, Seok-Hwan;Cho, Jeong-Kwon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.420-427
    • /
    • 2017
  • Recently, the depletion of fossil fuels, global warming and environmental pollution have emerged as a worldwide problem, and studies of new renewable energy sources have been progressed. Among the many renewable energy sources, the use of bio fuel has the potential to displace fossil fuels due to low price, easy to handle, and the abundant sources. Pyrolysis oil (PO) derived from waste wood and sawdust is considered an alternative fuel for use in diesel engines. On the other hand, PO is limited to diesel engines because of its low cetane number, high viscosity, high acidity, and low energy density. Therefore, to improve its poor properties, PO was mixed with alcohol fuels, such as ethanol. Early mixing with ethanol has the benefit of improving the storage and handling properties of the PO. Furthermore, a PO-ethanol blended fuel was injected separately, which can be fired through pilot-injected diesel in a dual-injection diesel engine. The experimental results showed that the substitution of diesel with blended fuel increases the amount of HC and CO, but reduces the NOx and PM significantly.

Effects of Aging and Soil Texture on Composting of Diesel-Contaminated Soil (디젤오염기간 및 토성이 오염토양 콤포스팅 처리에 미치는 영향)

  • Choi, Jung-Young;Namkoong, Wan;Park, Joon-Seok;Hwang, Eui-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.132-139
    • /
    • 2002
  • This study was carried out to investigate the effects of aging and soil texture on composting of diesel-contaminated soil. The soils used for this study were silt loam and sand. Target contaminant, diesel oil, was spiked at 10,000mgTPH/kg of dry soil. Aging times of diesel-contaminated soils were 15days and 60days, respectively. Fresh diesel-contaminated soil was also investigated. Moisture content was controlled to 70% of soil field capacity. Mix ratio of soil to sludge was 1:0.3 as wet weight basis. Temperature was maintained at $20^{\circ}C$ Volatilization loss of TPH was below 2% of initial concentration. n-Alkanes lost by volatilization were mainly by the compounds of C10 to C17. Diesel in contaminated soil was mainly removed by biodegradation mechanism. First order degradation rate constant of TPH in sandy soil was ranged from 0.081 to 0.094/day, which is higher than that in silt loam(0.056-0.061/day). From fresh to 60day-aged soils, there was little difference of TPH biodegradation rate between the soils. Carbon recovery ranged from 0.61 to 0.89. TPH degradation rate was highly correlated with $CO_2$ production rate.

  • PDF