• Title/Summary/Keyword: 디젤분무

Search Result 326, Processing Time 0.029 seconds

An experimental study on the impingement spray of a common-rail diesel injector (2) -atomization characteristics- (커먼레일식 디젤 인젝터의 충돌 분무에 대한 실험적 연구(2) -미립화 특성-)

  • Lee, C.S.;Park, S.W.;Seo, S.H.
    • Journal of ILASS-Korea
    • /
    • v.8 no.3
    • /
    • pp.19-26
    • /
    • 2003
  • In this study, experimental study on atomization characteristics of the fuel spray impinging on the wall was at different wall distances and angles of wall inclination. The fuel injection system was composed based on the common rail system. and the injection signal was synchronized by the delay generator. The atomization characteristics of the injected spray were analyzed in terms of the SMD and velocities which were measured by using the phase Doppler particle analyzer system. It is revealed that the free spray is atomized actively above 50mm form the injector tip. In the cases of the impinged spray, the 5MD and velocity of the impinged spray are smaller than those of the free spray. The impinged spray has the maximum near the 35mm of the radial distance from the injector axis, and the atomization performance is enhanced with the decrease of the wall distance.

  • PDF

Numerical Simulation of Auto-ignition Process of Diesel Sprays Using Detailed Chemistry and Representative Flamelet Model (상세 화학 반응 모델 및 RIF 모델을 이용한 디젤 분무의 자발화 과정 해석)

  • Yu, Y.W.;Kim, S.K.;Kim, Y.M.;Soh, J.L.
    • Journal of ILASS-Korea
    • /
    • v.5 no.2
    • /
    • pp.61-67
    • /
    • 2000
  • The interaction between chemistry and turbulence is treated by employing the Representative Interactive Flamelet (RIF) Model. The detailed chemistry of 114 elementary steps and 44 chemical species is adopted for the n-heptane/air reaction. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the multi-RIF is used. The effect of the number of RIF on ignition delay is discussed in detail. Numerical results indicate that the present RIF approach successfully predicts the ignition delay time as well as the essential features of a spray auto-ignition process.

  • PDF

Numerical Study on the Characteristics of Spray Combustion Processes in the DME and n-heptane Fueled Diesel-like Engine Conditions (DME 및 n-Heptane 연료의 디젤엔진 조건에서 분무연소특성 해석)

  • Yu, Yong-Wook;Suk, Jun-Ho;Lee, Sang-Kil;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • In the present study, in order to understand the overall spray combustion characteristics of DME fuel as well as to identify the distinctive differences of DME combustion processes against the conventional hydrocarbon liquid fuels, the sequence of the comparative analysis have been systematically made for DME and n-heptane liquid fuels. To realistically represent the physical processes involved in the spray combustion, this studyemploys the hybrid breakup model, the stochastic droplet tracking model, collision model, high-pressure evaporation model, and transient flamelet model with detailed chemistry. Based on numerical results, the detailed discussions are made in terms of the autoignition, spray combustion processes, flame structure, and turbulence-chemistry interaction in the n-heptane and DME fueled spray combustion processes.

  • PDF

Numerical Analyses of Fuel Sprays in a Constant Volume Chamber (정적챔버내 연료분무의 수치해석적 연구)

  • Yang, Du-Han;Park, Hyung-Koo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.974-979
    • /
    • 2003
  • This study aimed to analyze spray characteristics and the ambient flow field in the mixture preparation state of the premixed combustion stage. It is very important to understand the spray characteristics and the fuel injection conditions in direct injection diesel engine because the emission gas compositions from diesel engines are related to spray formation processes of the premixed combustion stage. The numerical simulation was performed using the STAR-CD which is a commercial CFD code. Computed results of the transient high pressure diesel spray were compared with experimental results of the same spray injection condition in the constant volume chamber. The results show that spray patterns of numerical simulation agree with this experimental results comparatively.

  • PDF

Numerical Analysis of the Formation of New Impinging Spray in the Combustion System (디젤연소실에서 새로운 충돌분무 형성에 대한 수치적 고찰)

  • Ryoo, Sung-Mok;Cha, Keun-Jong;Kim, Duck-Jool;Park, Kweonha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1625-1634
    • /
    • 1998
  • The objective of this study is to establish geometric guidelines for design of impaction parts prepared for removing undesirable effects of fuel deposition on a wall in small direct-injection diesel engines. In order to get the guidelines a new wall geometry is introduced and assessed, which has a flat top and a slant edge. The size of the flat top and the angle of the slant edge are varied and tested in same chamber condition, then their effects on spray dispersions and drop sizes are discussed. The results show that the case of 3.0mm flat top and $60^{\circ}$ edge angle gives the best spray characteristics for a small combustion chamber in the test conditions chosen in this paper.

Numerical Analysis of Geometric Effects on Spray Characteristics in Small Direct-injection Diesel Engines (소형디젤기관 내 충돌부의 기구학적 조건에 대한 분무특성의 수치적 해석)

  • 류성목;차건종;김덕줄;박권하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.55-65
    • /
    • 1999
  • Many researches have been investigating small direct-injection diesel engines using the spray impacting on walls. Those systems have one or more raised pips to break-up the fuel and spread it widely toward a desired direction in a combustion chamber. In this study, the sizes and heights of the pips are determined by using a computational fluid dynamics code employing non-orthogonal grid systems. In order to find out the suitable pip-shape to a small chamber, the spray behaviors, occupied spary volumes and averaged droplets sizes are calculated with the variation of shape of the pip, such as, size and heights and inclined degree. The desired shape of the impinging land is proposed for the design of combustion system in small diesel engines.

  • PDF

The Numerical Study on Prediction of Diesel Fuel Spray Evolution in a Different Types of Nozzle Geometry (노즐 형상에 따른 디젤 연료 분무의 발달 예측에 관한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.169-174
    • /
    • 2017
  • The objective of this study was to verify the experimental and numerical results of spray evolution injected from different types of the nozzle-hole geometries. Spray visualization was taken by high speed camera under the different conditions. For the simulations of spray tip penetration, turbulence, evaporation and break-up model were applied K-zeta-f, Dukowicz and Wave model, respectively. Also, the prediction accuracy of spray tip penetration was increased by varying the spray cone angle. At the same time, the results of this work were compared in terms of spray tip penetration, and SMD characteristics. The numerical results of spray evolution process and spray tip penetration showed good agreement with experimental one.

A Study on the Characteristics of an Evaporating Diesel Spary Using LIEF Technique (LIEF법을 이용한 증발 디젤 분무의 특성에 관한 연구)

  • Kim, Y.R.;Kim, M.S.;Cho, H.;Min, K.D.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.18-23
    • /
    • 2002
  • An evaporating diesel spray of a common rail lnjector was visualized by LIEF technique. This technique makes it possible to separate the vapor and liquid phase images. The experiment was conducted in a constant volume vessel to make a high temperature and high pressure condition. Three images(vapor and liquid phase images from LIEF and a liquid phase image from Mie scattering) were taken simultaneously in one spray event. The major experimental parameters are the injection pressure and the ambient gas pressure. Also, a relative SMD distribution in a liquid phase was obtained by the ratio of the intensities of the fluorescence and the Mie scattering. The results show that the injection pressure and the ambient gas pressure have a close relation with the spray development and air-fuel muting process.

  • PDF

A Numerical Analysis on the Spray Characteristics at Different Injection System Parameters in a Common-rail Diesel Engine (연료분사계 변수의 변화에 따른 커먼레일 디젤엔진의 분무특성에 관한 수치적 분석)

  • Lee, Suk-Young;Jeon, Chung-Hwan
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • This paper present the diesel spray characteristics at different injection system parameters in a HSDI diesel engine. The spray characteristics was calculated by the coupled simulation of fuel injection system model and three-dimensional KIVA-3V code with TAB spray model. The relevant injection parameters are accumulator volume, control chamber initial volume, control orifice diameter, needle valve diameter and nozzle chamber initial volume, etc. Parametric investigation with respect to twelve relevant injection parameters showed that there was a significant advantage in varying control chamber initial volume, control chamber orifice diameter, and nozzle chamber orifice diameter with respect to effect the SMD and fuel injection speed. Consequently, in order to design the fuel injection system for spray characteristics, it seems reasonable to suppose to be optimized the fuel injection system.

Development of the low Emission type Fuel Feeding System for Diesel Automobile I (Characteristics and Spray of Emulsified Fuel) (디젤자동차의 저공해형 연료공급장치 개발 I (유화연료의 특성 및 분무거동))

  • Cho, S.C.;Yoon, M.K.;Ryu, J.I.
    • Journal of ILASS-Korea
    • /
    • v.2 no.3
    • /
    • pp.8-16
    • /
    • 1997
  • Ta investigate characteristics and spray of emulsified fuet we are mixed water with diesel oil using ultrasonic energy fuel feeding system. Separation ratio of emulsified fuel was shown good condition that of water content is small and longer ultrasonic energy adding time. Viscosity of emulsified fuel increased 79% with addition to water content and surface tension increased 1.6% in comparision to pure diesel oil. The SMD of emulsified fuel adding ultrasonic energy decreased with 3% in comparision to pure diesel oil. With increasing 5, 10% water content the SMD decreased 15.6, 20.1% in comparision to pure diesel oil. The mind-explosion was investigated with 4step.

  • PDF