• Title/Summary/Keyword: 디바이스융합

Search Result 390, Processing Time 0.024 seconds

DBSCAN-based Energy-Efficient Algorithm for Base Station Mode Control (에너지 효율성 향상을 위한 DBSCAN 기반 기지국 모드 제어 알고리즘)

  • Lee, Howon;Lee, Wonseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1644-1649
    • /
    • 2019
  • With the rapid development of mobile communication systems, various mobile convergence services are appearing and data traffic is exploding accordingly. Because the number of base stations to support these surging devices is also increasing, from a network provider's point of view, reducing energy consumption through these mobile communication networks is one of the most important issues. Therefore, in this paper, we apply the DBSCAN (density-based spatial clustering of applications with noise) algorithm, one of the representative user-density based clustering algorithms, in order to extract the dense area with user density and apply the thinning process to each extracted sub-network to efficiently control the mode of the base stations. Extensive simulations show that the proposed algorithm has better performance results than the conventional algorithms with respect to area throughput and energy efficiency.

Comparison and analysis of chest X-ray-based deep learning loss function performance (흉부 X-ray 기반 딥 러닝 손실함수 성능 비교·분석)

  • Seo, Jin-Beom;Cho, Young-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1046-1052
    • /
    • 2021
  • Artificial intelligence is being applied in various industrial fields to the development of the fourth industry and the construction of high-performance computing environments. In the medical field, deep learning learning such as cancer, COVID-19, and bone age measurement was performed using medical images such as X-Ray, MRI, and PET and clinical data. In addition, ICT medical fusion technology is being researched by applying smart medical devices, IoT devices and deep learning algorithms. Among these techniques, medical image-based deep learning learning requires accurate finding of medical image biomarkers, minimal loss rate and high accuracy. Therefore, in this paper, we would like to compare and analyze the performance of the Cross-Entropy function used in the image classification algorithm of the loss function that derives the loss rate in the chest X-Ray image-based deep learning learning process.

Semantic Network of User Experience in Automotive Connectivity Systems: Comparative Analysis of Korean and the US Automakers (전기차 커넥티비티 시스템의 사용자 경험 의미연결망: 한국과 미국의 비교를 중심으로)

  • Choi, Bo-Mi;Lee, Da-Young;Choi, Junho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.537-544
    • /
    • 2022
  • As the penetration of electric vehicles and development of new models, user experience factors are getting more important in designing connectivity systems for car infotainment services. The primary object of this study is to identify commonalities and differences by comparing user experience factors in the Korean and US electric vehicle markets. This study derived connectivity keywords by text mining the vehicle introduction on the market in each country, and performed centrality, cluster analysis and visualization mapping using the semantic network analysis. As a result, the Korean new electric vehicle connectivity service mainly focused on driving functions such as driving, parking assistance, and charging, while US focused on device connection, convenience function control, app use, entertainment viewing. Based on the analysis, this study presented the practical implications in marketing, system design, and HMI design.

Lifelog Analysis and Future using Artificial Intelligence in Healthcare (헬스케어에서 인공지능을 활용한 라이프로그 분석과 미래)

  • Park, Minseo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2022
  • Lifelog is a digital record of an individual collected from various digital sensors, and includes activity amount, sleep information, weight change, body mass, muscle mass, fat mass, etc. Recently, as wearable devices have become common, a lot of high-quality lifelog data is being produced. Lifelog data shows the state of an individual's body, and can be used not only for individual health care, but also for causes and treatment of diseases. However, at present, AI/ML-based correlation analysis and personalization are not reflected. It is only at the level of presenting simple records or fragmentary statistics. Therefore, in this paper, the correlation/relationship between lifelog data and disease, and AI/ML technology inside lifelog data are examined, and furthermore, a lifelog data analysis process based on AI/ML is proposed. The analysis process is demonstrated with the data collected in the actual Galaxy Watch. Finally, we propose a future convergence service roadmap including lifelog data, diet, health information, and disease information.

IoT-based Smart Switchboard Development for Power Supply of Entertainment Devices (엔터테인먼트 장치의 전원 공급을 위한 IoT 기반의 스마트 배전반 개발)

  • Kang, Yun-Jeong;Lee, Kwang-Jae;Choi, Dong-Oun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.311-321
    • /
    • 2021
  • In this study, a smart switchboard for power supply of entertainment devices was developed for the following purposes. First, the heat generated when the high-temperature and humid air inside is cooled by the thermoelectric module is smoothly discharged to the outside of the switchboard, thereby maximizing the cooling effect. So, it is possible to prevent excessive temperature rise inside the switchboard. Various problems such as condensation inside the switchboard can be prevented by controlling the temperature of the switchboard in which a fire occurs due to excessive heat in summer, removing moisture due to the cooling effect, and generating heat instead of cooling in winter. Second, it is a smart switchboard control system that can reduce the salt that may permeate inside the switchboard. Third, the smart switchboard system is an IoT-controlled switchboard that collects environmental data using a variety of sensors and can remotely control devices through a smartphone, and can be easily used in various fields.

Investigation on Electrochemical Property of CNT Fibers and its Non-enzymatic Sensing Performance for Glucose Detection (CNT Fibers의 전기화학적 특성 및 비효소적 글루코스 검출 성능 고찰)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.159-164
    • /
    • 2021
  • As the attachable-type wearable devices have received considerable interests, the need for the development of high-performance electrode materials of fabric or textiles type is emerging. In this study, we demonstrated the electrochemical property of CNT fibers electrode as a flexible electrode material and its non-enzymatic glucose sensing performance. Surface morphology of CNT fibers was observed by SEM. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The CNT fibers based sensor exhibited improved sensing performances such as high sensitivity, a wide linear range, and low detection limit due to improved electrochemical properties such as low capacitive current, good electrochemical activity by efficient direct electron transfer between the redox species and the electrode interface. Therefore, this study is expected to be used as a basic research for the development of high performance flexible electrode materials based on CNT fibers.

Development of wearable device with smart key function and convergence of personal bio-certification and technology using ECG signal (심전도 신호를 이용한 개인 바이오인증 기술 융합과 smart key 기능이 탑재된 wearable device 개발)

  • Bang, Gul-Won
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.637-642
    • /
    • 2022
  • Self-authentication technology using electrocardiogram (ECG) signals is drawing attention as a self-authentication technology that can replace existing bio-authentication. A device that recognizes a digital electronic key can be mounted on a vehicle to wirelessly exchange data with a car, and a function that can lock or unlock a car door or start a car by using a smartphone can be controlled through a smartphone. However, smart keys are vulnerable to security, so smart keys applied with bio-authentication technology were studied to solve this problem and provide driver convenience. A personal authentication algorithm using electrocardiogram was mounted on a watch-type wearable device to authenticate bio, and when personal authentication was completed, it could function as a smart key of a car. The certification rate was 95 per cent achieved. Drivers do not need to have a smart key, and they propose a smart key as an alternative that can safely protect it from loss and hacking. Smart keys using personal authentication technology using electrocardiogram can be applied to various fields through personal authentication and will study methods that can be applied to identification devices using electrocardiogram in the future.

Development of bio-inspired hierarchically-structured skin-adhesive electronic patch for bio-signal monitoring (생체정보 진단을 위한 생체모사 계층구조 기반 피부 고점착 전자 패치 개발)

  • Kim, Da Wan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.749-754
    • /
    • 2022
  • High adhesion and water resistance of the skin surface are required for wearable and skin-attachable electronic patches in various medical applications. In this study, we report a stretchable electronic patch that mimics the drainable structure pattern of the hexagonal channels of frog's pads and the sucker of an octopus based on carbon-based conductive polymer composite materials. The hexagonal channel structure that mimics the pads of frogs drains water and improves adhesion through crack arresting effect, and the suction structure that mimics an octopus sucker shows high adhesion on wet surfaces. In addition, the high-adhesive electronic patch has excellent adhesion to various surfaces such as silicone wafer (max. 4.06 N/cm2) and skin replica surface (max. 1.84 N/cm2) in dry and wet conditions. The high skin-adhesive electronic patch made of a polymer composite material based on a polymer matrix and carbon particles can reliably detect electrocardiogram (ECG) in dry and humid environments. The proposed electronic patch presents potential applications for wearable and skin-attachable electronic devices for detecting various biosignals.

Virtual Costume Creation Simplification Service Design - Focusing on Metaverse and ZEPETO - (가상 의상 제작 간략화 서비스 설계 - 메타버스, 제페토를 중심으로 -)

  • Ryu, Sang-Hyun;Sur, Da-Eun;Kim, Kyeong-Mok;Ban, Jae-Eun;Huh, Won-Whoi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.583-589
    • /
    • 2022
  • Due to COVID-19, which has thrown the whole world into chaos, it has become an era where many technologies and contents are made non-face-to-face. At the same time, the popularity of the metaverse service is also increasing day by day, and the virtual costume (avatar) industry, one of the sub-industries, is also growing. In this study, we designed and developed a system for creating virtual costumes to be uploaded to ZEPETO, a mobile metaverse service. Unlike the existing service that requires a program that operates in a PC environment, it can be produced only by shooting and simple operation through a mobile device. With the advantage of being able to process all tasks of this system in a mobile environment, small businesses and individual operators who are not familiar with external programs will be able to more easily access the 3D virtual clothing industry.

Analyses of Security Issues and Vulnerability for Smart Home Network based on Internet of Things (사물인터넷 기반의 스마트 홈 네트워크에서의 취약점 및 보안 이슈 분석)

  • Jung Tae Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.707-714
    • /
    • 2023
  • The Internet of Things, which is the key factor of the 4th industrial revolution, are apt to apply to many systems. The existing security mechanism cannot be realized with limited resources such as low capacity of devices and sensors. In order to apply IoT system, a new structure and ultra-lightweight encryption is required. In this paper, we analyzed security issues that can operate in Internet-based smart home networks, and to solve the critical issues against these attacks, technologies for device protection between heterogeneous devices. Security requirements are required to protect from attacks. Therefore, we analyzed the demands and requirements for its application by analyzing the security architecture and features in smart home network.