We intend to use topic modeling to identify radiation-themed papers published from 1989 to 2022 and analyze the relevance and weight between topics. This study analyzed topics derived from national subjects for 717 papers published until recently in 2022 to contribute to the revitalization of research in the field of radiation. Through text mining, overall research trends on the subject distribution of the study were analyzed, and five topics were derived through topic modeling. First, among the papers to be analyzed, a total of 1,675 words were frequency-analyzed through the preprocessing process of key words in a total of 717 papers centered on keywords. Second, as a result of analyzing topics based on the association of constituent words for five topics, it was found that studies focused on minimizing dose in the range that does not degrade image quality in the fields of radiation, image, CT clinical. In addition, it was found that various studies were mainly conducted in the MRI, and the study of ultrasound in various areas of disease analysis was actively attempted.
This study used the text mining method to analyze the research trend of the Journal of Creative Information Culture(JCIC) which is the journal of convergence. The existing research trend analysis method has a limitation in that the researcher's personality is reflected using the traditional content analysis method. In order to complement the limitations of existing research trend analysis, this study used topic modeling. The English abstract of the paper was analyzed from 2015 to 2019 of the JCIC. As a result, the word that appeared most in the JCIC was "education," and eight research topics were drawn. The derived subjects were analyzed by educational subject, educational evaluation, learner's competence, software education and maker culture, information education and computer education, future education, creativity, teaching and learning methods. This study is meaningful in that it analyzes the research trend of the JCIC using text mining.
Since the Fourth Industrial Revolution, various changes have occurred in society as a whole due to advance in technologies such as artificial intelligence and big data. The amount of data that can be collect in the process of applying important technologies tends to increase rapidly. Especially in academia, existing generated literature data is analyzed in order to grasp research trends, and analysis of these literature organizes the research flow and organizes some research methodologies and themes, or by grasping the subjects that are currently being talked about in academia, we are making a lot of contributions to setting the direction of future research. However, it is difficult to access whether data collection is necessary for the analysis of document data without the expertise of ordinary programs. In this paper, propose a text mining-based topic modeling Web application model. Even if you lack specialized knowledge about data analysis methods through the proposed model, you can perform various tasks such as collecting, storing, and text-analyzing research papers, and researchers can analyze previous research and research trends. It is expect that the time and effort required for data analysis can be reduce order to understand.
Usually, text data consists of many variables, and some of them are closely correlated. Such multi-collinearity often results in inefficient or inaccurate statistical analysis. For supervised learning, one can select features by examining the relationship between target variables and explanatory variables. On the other hand, for unsupervised learning, since target variables are absent, one cannot use such a feature selection procedure as in supervised learning. In this study, we propose a word selection procedure that employs topic models to find latent topics. We substitute topics for the target variables and select terms which show high relevance for each topic. Applying the procedure to real data, we found that the proposed word selection procedure can give clear topic interpretation by removing high-frequency words prevalent in various topics. In addition, we observed that, by applying the selected variables to the classifiers such as naïve Bayes classifiers and support vector machines, the proposed feature selection procedure gives results comparable to those obtained by using class label information.
The Journal of the Convergence on Culture Technology
/
v.9
no.1
/
pp.463-469
/
2023
The aim of this study is to provide basic data that can contribute to improving successful clinical adaptation and reducing turnover of new graduate nurses by analyzing research related to reality shock experienced by new graduate nurses using text network analysis. The topics of reality shock experienced by new graduate nurses were extracted from 115 papers published in domestic and foreign journals from January 2002 to December 2021. Articles were retrieved from 6 databases (Korean DB: DBpia, KISS, RISS /International DB: Web of science, Springer, Scopus). Keywords were extracted from the abstract and organized using semantic morphemes. Network analysis and topic modeling for subject knowledge structure analysis were performed using NetMiner 4.5.0 program. The core keywords included 'new graduate nurses', 'reality shock', 'transition', 'student nurse', 'experience', 'practice', 'work environment', 'role', 'care' and 'education'. In recent articles on reality shock experienced by new graduate nurses, three major topics were extracted by LDA (Latent Dirichlet Allocation) techniques: 'turnover', 'work environment', 'experience of transition'. Based on this research, the necessity of interventional research that can effectively reduce the reality shock experienced by new graduate nurses and successfully help clinical adaptation is suggested.
Hong, Sungjin;Moon, Gihoon;Yang, Seong Hun;Yoo, Do Guen
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.378-378
/
2022
상수도시스템의 과정 중 최종 단계인 급수단계에서 지역전반에 수질문제가 발생할 경우, 직간접적인 피해의 해결은 장기간 지속될 수 있다. 본 연구에서는 실시간 비정형정보의 빅데이터 분석을 통해 상수도시스템에서 수질사고 문제의 파급력과 2차 피해 등의 연결 관계 변화 추적을 위한 기초적 분석을 수행하였다. 과거 대규모 수질사고가 발생된 바 있는 인천광역시 유충발생 사고를 대상으로 뉴스 기사 웹크롤링 절차를 정립하고, 그 결과를 분석하였다. '인천 유충'이 최초 보도되었던 2020년 7월 13일 부터 이후 1년을 대상으로 네이버 통합검색에 의해 표출되는 뉴스기사를 웹크롤링하였으며, 프로그래밍을 통한 불용어 제거 및 관련성 검토를 통해 총 920건의 기사를 분석하였다. 수질사고의 전개양상에 따라 사고발생, 확산, 수습, 그리고 보상의 4단계로 임의 구분하여 분석하였다. 의미분석을 위한 토픽모델링 기법은 잠재 디리클레 할당(Latent Dirichlet Allocation, LDA) 방법을 적용하였으며, 긍부정 감정분석은 KNU 한국어 감성사전(KNU sentiment lexicon)을 활용하여 수행하였다. 토픽 모델링 결과, 사고 발생에서부터 확산, 수습, 보상의 단계에 맞춰 적절한 주제어의 조합에 따른 기사들이 도출되었으며, 단계별 긍부정 기사 비율역시 사고의 전개단계에 따라 적절히 나타남을 확인하였다. 제시된 수질사고 관련 비정형정보 분석 방법론과 결과는 과거 사고 사례 분석을 통한 검색 및 긍부정 키워드 확정, 키워드 발생 비율 변동(사고전과 후)에 따른 상황판단 기준설정 등에 활용이 가능하다.
The Journal of the Convergence on Culture Technology
/
v.10
no.3
/
pp.503-512
/
2024
This study examines the essays of academic background, written by students from a university, which is classified into prestigious universities in Korean society. By Latent Dirichlet Allocation, 172 essays were analyzed to explore the students' perspectives of the academic fractionalism. The analysis identified five topics such as, functional aspects (Topic 1), double-edged nature (Topic 2), power communities (Topic 3), symbols of victory (Topic 4), and dysfunctional aspects (Topic 5). The most frequently appearing keywords are 'individual,' 'status,' and 'means' in Topic 1, 'definition,' 'school,' and 'meaning' in Topic 2, 'people,' 'origin,' and 'power' in Topic 3, 'university,' 'ability,' and 'effort' in Topic 4, and 'academic achievement,' 'South Korea,' and 'origin' in Topic 5. By exploring the topics, we found that students regarded class reproduction by education as important social issues and they showed little interest in other factors influencing academic fractionalism, such as race or ethnicity. these findings suggest that professars, who teach the impact of education on academic fractionalism, deal with the influence of diverse factors on academic fractionalism.
The purpose of this study is to understand the public needs for AI education actively promoted and supported by the current government. In doing so, 11 metropolitan news articles and Twitter posts regarding AI education that have been posted from January 1, 2018 to December 31, 2019 were collected. Then, word frequency analysis using TF(Term Frequency) method and LDA(Latent Dirichlet Allocation) method of topic modeling analysis were conducted. The topics of the news articles turn out to be a macroscopic policy support such as 'training female manpower in the AI field' and 'curriculum reform of university and K-12', whereas the topics of twitter delineate more detailed social perception on future society, such as future competencies and pedagogical methods, including 'coexistence with intelligent robots', 'coding education', and 'humane education competence development'. The findings are expected to be used to suggest the implications for the composition and management of AI curriculum as well as the basic framework of human resources development in the future industry.
With the advent of multi-channel TV, IPTV and smart TV services, excessive amounts of TV program contents become available at users' sides, which makes it very difficult for TV viewers to easily find and consume their preferred TV programs. Therefore, the service of automatic TV recommendation is an important issue for TV users for future intelligent TV services, which allows to improve access to their preferred TV contents. In this paper, we present a recommendation model based on statistical machine learning using a collaborative filtering concept by taking in account both public and personal preferences on TV program contents. For this, users' preference on TV programs is modeled as a latent topic variable using LDA (Latent Dirichlet Allocation) which is recently applied in various application domains. To apply LDA for TV recommendation appropriately, TV viewers's interested topics is regarded as latent topics in LDA, and asymmetric Dirichlet distribution is applied on the LDA which can reveal the diversity of the TV viewers' interests on topics based on the analysis of the real TV usage history data. The experimental results show that the proposed LDA based TV recommendation method yields average 66.5% with top 5 ranked TV programs in weekly recommendation, average 77.9% precision in bimonthly recommendation with top 5 ranked TV programs for the TV usage history data of similar taste user groups.
Kim, Taeyong;Park, Hyemin;Heo, Junyong;Yang, Minjune
Economic and Environmental Geology
/
v.54
no.3
/
pp.353-364
/
2021
Since the mid-twentieth century, geology has gradually evolved as an interdisciplinary context in South Korea. The journal of Economic and Environmental Geology (EEG) has a long history of over 52 years and published interdisciplinary articles based on geology. In this study, we performed a literature review using topic modeling based on Latent Dirichlet Allocation (LDA), an unsupervised machine learning model, to identify geological topics, historical trends (classic topics and emerging topics), and association by analyzing titles, keywords, and abstracts of 2,571 publications in EEG during 1968-2020. The results showed that 8 topics ('petrology and geochemistry', 'hydrology and hydrogeology', 'economic geology', 'volcanology', 'soil contaminant and remediation', 'general and structural geology', 'geophysics and geophysical exploration', and 'clay mineral') were identified in the EEG. Before 1994, classic topics ('economic geology', 'volcanology', and 'general and structure geology') were dominant research trends. After 1994, emerging topics ('hydrology and hydrogeology', 'soil contaminant and remediation', 'clay mineral') have arisen, and its portion has gradually increased. The result of association analysis showed that EEG tends to be more comprehensive based on 'economic geology'. Our results provide understanding of how geological research topics branch out and merge with other fields using a useful literature review tool for geological research in South Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.