• Title/Summary/Keyword: 등온모델

Search Result 217, Processing Time 0.02 seconds

Adsorption Properties of Cadmium onto Granite Soil and Calcium Sand (화강풍화토 및 칼슘샌드에 의한 카드뮴 흡착특성 연구)

  • Lee, Myoung-Eun;Kwon, Min-Seok;Ahn, Yong-Tae;Chung, Jae-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.27-34
    • /
    • 2014
  • Kinetic and isotherm properties of the cadmium adsorption onto calcium sand and granite soil were evaluated by batch experiments. The pHs of calcium sand and granite soil were 9.51 and 6.33, respectively, showing that the precipitation of heavy metals can be occurred due to the increase of pH when the calcium sand is used as an adsorbent. The pseudo-second-order model described the adsorption kinetics satisfactory with correlation coefficients over 0.999. The equilibrium adsorption capacities of calcium sand and granite soil were 2.10 and 2.16 mg/g, respectively. The adsorption isotherm followed the Freundlich isotherm model, indicating the cadmium adsorbed onto the heterogeneous surfaces of adsorbents.

A Study on Transport Characteristics of Fe in Soil (토양 내 철의 이동특성에 관한 연구)

  • Cho, Ki-Chul;Lee, Kyeong-Ho;Choung, Young-Heon;Cho, Sang-Won;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1043-1051
    • /
    • 2005
  • In this stduy, adsorption and transport characteristics of Fe in the soil were investigated using convection-dispersion local equilibrium sorption model and two-site non-equilibrium sorption model. In batch experiments with different Fe concentration, characteristics of Fe adsorption was investigated using Freundlich and linear isotherm. Column experiments with different flow rate, organic matter content md Fe concentration were also carried out. We measured Fe concentrations in injection-liquid and in effluent, and then applied them to CXTFIT program. As a result of column experiments, some parameters(D, R, ${\beta}$, ${\omega}$) used in two-site non-equilibrium adsorption model were obtained. Characteristics of Fe transport were analyzed using the parameters(D, R, ${\beta}$, ${\omega}$) obtained from the CXTFIT program, Consequently, characteristics of Fe transport in the soil were predicted through two-site non-equilibrium adsorption model.

Adsorption Characteristics Analysis of 2,4-Dichlorophenol in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel using Response Surface Modeling Approach (반응표면분석법을 이용한 폐감귤박 활성탄에 의한 수중의 2,4-Dichlorophenol 흡착특성 해석)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.723-730
    • /
    • 2017
  • The batch experiments by response surface methodology (RSM) have been applied to investigate the influences of operating parameters such as temperature, initial concentration, contact time and adsorbent dosage on 2,4-dichlorophenol (2,4-DCP) adsorption with an activated carbon prepared from waste citrus peel (WCAC). Regression equation formulated for the 2,4-DCP adsorption was represented as a function of response variables. Adequacy of the model was tested by the correlation between experimental and predicted values of the response. A fairly high value of $R^2$ (0.9921) indicated that most of the data variation was explained by the regression model. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. These results showed that the model used to fit response variables was significant and adequate to represent the relationship between the response and the independent variables. The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of 2,4-DCP on WCAC calculated from the Langmuir isotherm model was 345.49 mg/g. The rate controlling mechanism study revealed that film diffusion and intraparticle diffusion were simultaneously occurring during the adsorption process. The thermodynamic parameters indicated that the adsorption reaction of 2,4-DCP on WCAC was an endothermic and spontaneous process.

An Expermental and Numerical Study of Natural Convection in the Annuli between Horizontal Confocal Elliptic Cylinders (수평동심 환원사이의 환상공간에서의 자연대류에 관한 수치 및 실험적 연구)

  • Lee, J. H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.2
    • /
    • pp.160-168
    • /
    • 1982
  • 수평으로 놓여진 2개의 동심타원 사이의 환상공간에서의 자연대류현상이 수치계산 및 실험적으로 연구되었다. 수치적 연구는 정상 2차원 층류유동영역에서 수행되었으며 유선 및 등온선이 구하여 졌다. 또한 특수한 경우로서 수평동심원 사이의 환상공간에 관한 기존연구와 비교하여 좋은 일치 를 보았다. 실험적 연구에서는 3개의 실험모델을 제작하였으며 마하젠더 간섭계에 의한 간섭사진 으로부터 등온선 분포를 얻었으며 아울러 유동에 관한 정보도 얻을 수 있었다. 실험과 수치계산 결과는 상당히 좋은 일치를 보였으며 기존 동심원환상공간에 편심율이 추가된 이론전개 및 수치 계산방법의 적합성을 알 수 있었고 이로서 환상공간에서의 자연대류에 관한 연구를 확장시켰다.

Model and Experimental Isotherms of Soluble Proteins at Water Surfaces (수용성 단백질의 계면상 등온곡선의 모델과 실험적 규명)

  • Sung Hyun Kwon;Daechul Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.230-235
    • /
    • 2003
  • 수용성, 구형의 단백질 분자는 기능성(효소, 유화제, 중화제 등)에 따라 센서나 유사생체기관에 응용성이 크다. 본 연구는 물-공기 계면에서 형성되는 단백질의 표면상태방정식(일명 표면등온선)을 이론적으로 도출하고 그 결과를 실험적으로 확인하여 단백질 분자의 기능적 이용에 활용하고자 한 것이다. 아미노산 부분사슬간, 분자와 물과의 인력, 정전기적 인력을 고려하여 종합적 상태방정식을 도출하였으며 탄소 14로 tagging한 albumin실험과 비교하여 상당히 일치하는 경향을 확인할 수 있었다.

  • PDF

Experiment on Chloride Adsorption by Calcium Aluminate Phases in Cement (시멘트내 칼슘 알루미네이트 상에 의한 염소이온의 흡착반응 연구)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.389-397
    • /
    • 2017
  • Friedel's salt is an important product of chemical adsorption between cement hydrate and chloride ions because it contains chlorine in its structure. When cement reacts with water in the presence of chloride ions, the $C_3A$ phase, and $C_4AF$ phase react with chloride to produce Friedel's salt. If chloride ions penetrate into concrete from external environments, many calcium aluminate hydrates, including AFm, can bind chloride ions. It is very important, therefore, to investigate the chloride binding isotherm of $C_3A$ phase, $C_4AF$ phase, and AFm phase to gain a better understanding of chloride binding in cementitious materials. Meanwhile, the adsorption isotherm can provide us with the fundamental information for the understanding of adsorption process. The experimental results of the isotherm can supply not only the quantitative knowledge of the cement-Friedel's salt system, but also the mechanism of adsorption and the properties of their interactions. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with $C_3A$, $C_4AF$ and AFm phases. The chloride adsorption isotherm was depicted with Langmuir isotherm and the adsorption capacity was low in terms of the stoichiometric point of view. However, the chloride adsorption of AFm phase was depicted with Freundlich isotherm and the value was very low. Since the amount of the adsorption was governed by temperature, the affecting parameters of isotherm were expressed as a function of temperature.

Evaluation of Adsorption Characteristics of the Media for Biofilter Design (바이오필터설계를 위한 바이오필터 담체의 흡착 특성)

  • Lee, Eun-Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.994-1001
    • /
    • 2008
  • Freundlich isothermal adsorption parameters, applicable to such biofilter-model as process-lumping model(Lim's model), for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost were obtained and were compared each other, assuming that adsorbents are enclosed by water layer, in order to construct robust process-lumping biofilter model effective for wide-range of hydrophilic volatile organic compounds(VOC). In this investigation 0.04, 0.08, 0.12, 0.16, 0.2, 0.4, 0.8 and 1.0ml of ethanol were added to three kinds of adsorbent-media and were placed at $30^{\circ}{\cdots}$ under the wet condition of the media, which was the same as biofilter operating condition, until the adsorption reached the condition of equilibrium before each adsorbed amount of ethanol was obtained. Then adsorption capacity parameters(K) and adsorption exponents of Freundlich adsorption isotherm equation, which simulates the adsorbed amount of ethanol equilibrated with the ethanol concentration of the condensed water in the pore of the media, were constructed for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost as (0.7566 and $5.070{\times}10^{-7}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.7566}$), (0.8827 and $1.000{\times}10^{-8}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.8827}$) and (0.5688 and $5.243{\times}10^{-6}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.5688}$), respectively. These Freundlich isothermal adsorption parameters were applicable to the adsorption characteristics of biofilter media enclosed with bio-layer. The order of magnitude of the ratio of ethanol-air/water partition coefficient and toluene-air/water partition coefficient was almost consistent to that of ethanol-adsorbed amounts in this experiment with compost and in the investigation of Delhomenie et al. on toluene-adsorption to wet compost.

Kinetic Analysis of Isothermal Pyrolysis of Korean Refuse Plastic Fuel for Application to Circulating Fluidized Bed Boiler (순환유동층 적용을 위한 국내 폐플라스틱 고형연료의 등온 열분해 분석)

  • Park, Kyoung-Il;Kim, Dong-Won;Lee, Tae-Hee;Lee, Jong-Min
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.692-699
    • /
    • 2013
  • In this study, isothermal (350, 375, 400, 425, 450, 500, $850^{\circ}C$) experiments were carried out using a custom-made thermobalance to analyze the thermal decomposition properties of refuse plastic fuel (RPF), which is to be used as a cofiring fuel with a sub-bituminous coal at commercial circulating fluidized bed (CFB) boiler in Korea. In isothermal pyrolysis results, no change in the reaction model was observed in the temperature range of $375{\sim}450^{\circ}C$ and it was revealed that the first order chemical reaction (F1) is the most suitable among 12 reaction models. The activation energy shows similar results irrespective of application of reaction model in that the activation energy was 39.44 kcal/mol and 36.96 kcal/mol when using Arrhenius equation and iso-conversional method ($0.5{\leq}X{\leq}0.9$) respectively. Mean-while, the devolatilization time ($t_{dev}$) according to particle size (d) of RPF could be expressed as $t_{dev}=10.38d^{2.88}$ at $850^{\circ}C$, operation temperature of CFB and for even distribution and oxidation of RPF in CFB boiler, we found that the relationship of average dispersion distance (x) and particle size was $x{\leq}1.58d^{1.44}$.

Adsorption Characteristics of Dimetridazole Antibiotics on Activated Carbon Prepared from Agricultural Waste Citrus Peel (폐감귤박 활성탄을 이용한 항생제 Dimetridazole의 흡착특성)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.798-806
    • /
    • 2017
  • A activated carbon (WCAC, waste citrus activated carbon) prepared from an agricultural waste citrus peel material generated in Jeju was utilized for the removal of dimetridazole (DMZ) antibiotics in aqueous solution. The adsorption of DMZ on WCAC was investigated with the change of various parameters such as contact time, dosage of WCAC, particle size of WCAC, temperature, pH, and DMZ concentration. The DMZ adsorption capacity increased with increasing temperature and decreasing particle size. Also it was decreased at less than pH 4 but sustained almost constantly at pH 4 or greater. Isotherm parameters were determined from the Langmuir, Freundlich, Redlich-Peterson and Duinin-Radushkevich (D-R) isotherm models. The isotherm data were best described by the Redlich-Peterson isotherm model. And the adsorption kinetics can be successfully fitted to the pseudo-second-order kinetic model. The results of the intra-particle diffusion model suggested that film diffusion and intra-particle diffusion were occurred simultaneously during the adsorption process. Meanwhile, the thermodynamic parameters indicated that the adsorption reaction of DMZ on WCAC was an endothermic and spontaneous process. The experimental results showed that WCAC is a promising and cheap adsorbent for the removal of DMZ antibiotics.

Thermodynamic Analysis of Phenol Adsorption by Powdered Activated Carbon (활성탄에 의한 페놀 흡착의 열역학적 연구)

  • Kim, Hwanik;Lee, Myoung-Eun;Kang, Seoktae;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • The adsorption characteristics of phenol by the powdered activated carbon (PAC) were investigated by series of batch experiments. The pseudo-second-order model described the adsorption kinetics adequately with correlation coefficients over 0.999, indicating chemical adsorption as the rate-limiting step. The kinetic rate constants were from 0.55 to 19.81 mg $mg^{-1}min^{-1}$. The adsorption isotherm followed the Langmuir isotherm, indicating the homogeneous mono-layer adsorption onto the surface of the adsorbent. The values of activation energy, enthalpy and entropy were 17.44 kJ $mol^{-1}$, -8.26 kJ $mol^{-1}$ and -18.94 J $mol^{-1}K^{-1}$, respectively. The Gibbs free energy was in the range of -2.89~-2.14 kJ $mol^{-1}$. The results show that the phenol adsorption is physical, spontaneous and exothermic reaction.