• Title/Summary/Keyword: 등가응력 감소

Search Result 50, Processing Time 0.276 seconds

A Simulation Study on the Stress Distribution of the Transplanting Part of Artificial Knee Joint due to Elastic Modulus (탄성계수에 따른 무릎 인공관절 이식 부품의 응력분포에 관한 시뮬레이션 연구)

  • Lee, J.H.;Hwang, G.W.;Cho, J.U.;Cheon, Seong S.
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.89-93
    • /
    • 2015
  • This study analyzes the transplanting parts used as the graft of artificial knee joint. The low elastic titanium alloy is applied to clear up the stress shield effect. The simulation analysis is carried about the stress distribution of the transplanting parts. The correlation with frame is inferred and investigated through the equivalent stress distribution of titanium alloy due to elastic modulus. The stress of the transplanting parts decreases as the elastic modulus decreases at the first time. It decreases greatly near the stress of 46 GPa and increases again. Because the stress happened at the transplanting parts decreases, more stress is applied on the frame. This phenomenon is the stress shield effect. The result of this study can be thought to be necessary to develop the safe design of composite material.

Prediction of Equivalent Stress Block Parameters for High Strength Concrete (고강도 콘크리트의 등가응력 매개변수 추정에 관한 연구)

  • Lee, Do Hyung;Jeon, Jeongmoon;Jeong, Minchul;Kong, Jungsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.227-234
    • /
    • 2011
  • Recently, a high strength concrete of more than 40 MPa has been increasingly used in practice. However, use of the high strength concrete may influence on design parameters, particularly stress distribution. This is very true since the current everyday practice employs equivalent rectangular stress distribution that is derived from normal strength concrete. Subsequently, the stress distribution seems to be reevaluated and then a new distribution with new parameters needs to be suggested for the high strength concrete. For this purpose, linear and multiple regression analyses have been carried out in term of using experimental data for the high strength concrete of 40 to 80 MPa available in literatures. Accordingly, new parameters associated with the stress distribution have been proposed and employed for the design of flexural and compressive members. Comparative design examples indicate that designs with new parameters reduce section dimensions compared to those with the current code parameters for concrete strengths of 40 to 70 MPa. In particular, for compressive members, design with new parameters exhibit conservative compressive force compared to those with the current code parameters.

Nonlinear FE Analysis of RC Shear Walls (철근콘크리트 전단벽의 비선형 유한요소해석)

  • 곽효경;김도연
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.293-308
    • /
    • 1999
  • 이 논문에서는 패널, 깊은 보 그리고 전단벽과 같이 평면응력상태하에 있는 철근콘크리트 구조물의 비선형 유한요소해석에 있어서의 직교이방성 콘크리트 구성 모델의 적용성을 보여준다. 등가의 일축 변형을 개념을 토대로 콘크리트의 구성 관계가 주변형률 축과 일치하고 하중이력에 따라 회전하는 직교하는 축에 대해 제시된다. 제안된 모델은 이축 압축응력상태와 인장-압축 응력상태에서 각각 압축강도의 증가와 인장 저항력의 감소효과를 보여주는 이축 파괴영역의 정의를 포함한다. 인장균열이 발생한 후, 콘크리트의 압축강도의 감소효과가 제시되고, 인장강화효과로 알려진 철근에 의해 지지되는 콘크리트의 인장응력이 고려된다. 평균응력과 평균변형률 개념을 사용하여 힘의 평형, 적합조건 그리고 철근과 철근을 둘러싼 콘크리트 사이의 부착응력-슬림 관계를 토대로 인장강화효과를 모사하기 위한 모델이 제안된다. 유한요소 모델에 의한 예측은 유용한 실험자료와의 비교에 의해 입증된다. 이 논문에서는 해석결과와 이상화한 전단 패널실험으로부터 얻어진 실험값의 비교연구가 수행되고, 제안된 모델의 타당성을 보여주기 위해 서로 다른 응력상태하의 전단 패널 보와 벽체의 힘-변위 관계를 평가하였다.

  • PDF

Finite Element Simulation of Fracture Toughness Test (파괴인성시험의 유한요소 시뮬레이션)

  • Chu, Seok Jae;Liu, Conghao
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.491-496
    • /
    • 2013
  • Finite element simulations of tensile tests were performed to determine the equivalent stress - equivalent plastic strain curves, critical equivalent stresses, and critical equivalent plastic strains. Then, the curves were used as inputs to finite element simulations of fracture toughness tests to determine the plane strain fracture toughness. The critical COD was taken as the COD when the equivalent plastic strain at the crack tip reached a critical value, and it was used as a crack growth criterion. The relationship between the critical COD and the critical equivalent plastic strain or the reduction of area was found. The relationship between the plane strain fracture toughness and the product of the critical equivalent stress and the critical equivalent plastic strain was also found.

Equivalent Stress Distribution of a Stepped Bar with Hole under Torsional Loading (구멍이 있는 단이 진 비틀림 봉의 등가응력분포)

  • Kang, Eun Hye;Kim, Young Chul;Kim, Myung Soo;Baek, Tae Hyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.411-419
    • /
    • 2017
  • Stress concentration is one of the causes of the damage due to the large stress than the mean stress acting on the bar. This paper presents the results for stress of a stepped bar with a hole under torsional loading. The analysis for stress concentration and shearing stress was done by ANSYS Workbench which is a commercial finite element analysis software. The analysis results on fillet and hole are increased as the distance between them are become close. In addition, the distribution of the maximum equivalent stress developed in the fillet and hole in the outside range of the specific distance L (-100 mm ~ 300 mm) was almost constant in the models used in the analysis. On the other hand, the distribution of the maximum equivalent stress developed in the fillet and hole in the inside range of the specific distance L (-100 mm ~ 300 mm) was rapidly increasing and decreasing the change in the models used in the analysis. In addition, it was also possible to identify the location where the differences between equivalent stresses of hole and fillet occurred within a specific distance L (-100 mm ~ 300 mm). The analysis results of paper can used when selecting a hole location in a stepped bar under torsional loading.

Effects of Coronal Thread Pitch in Scalloped Implant with 2 Different Connections on Loading Stress using 3 Dimensional Finite Element Analysis (연결부 형태가 다른 두 가지 scallop 임플란트에서 경부 나사선 피치가 응력 분포에 미치는 영향 : 삼차원적유한요소분석)

  • Choi, Kyung-Soo;Park, Seong-Hun;Lee, Jae-Hoon;Huh, Jung-Bo;Yun, Mi-Jung;Jeon, Young-Chan;Jeong, Chang-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.2
    • /
    • pp.111-118
    • /
    • 2013
  • Purpose of present study is to investigate the effects of thread pitch in coronal portion in scalloped implant with 2 different connections on loading stress using 3 dimensional finite element analysis. Scalloped implant with 4 different thread pitches (0.4mm, 0.5mm, 0.6, and 0.7mm) in the coronal part was modeled with 2 different implant-abutment connections. Platform matching connection had the same implant and abutment diameter so that they were in flush contact at the periphery while platform mismatching connection had smaller abutment diameter than implant so that their connection was made away from periphery of implant-bone interface. Occlusal loading of 100N force was applied vertically and 30 degree obliquely to all 8 models and the maximum von Mises bone stress was identified. Loading stress as highly concentrated in cortical bone. Platform mismatching scalloped implant with small thread pitch (0.4mm) model had consistently lowest maximum von Mises bone stress in vertical and oblique loads. Platform matching model had lowest maximum von Mises bone stress with 0.6mm thread pitch in vertical load and with 0.4mm thread pitch in oblique load. Platform mismatching connection had important roles in reducing maximum von Mises bone stress. Scalloped implant with smaller coronal thread pitch showed trend of reducing maximum von Mises bone stress under load.

The Strength Evaluation of the Damaged Pressure Vessel (손상된 압력용기의 복구방안)

  • 이상록;우창수;이학주
    • Journal of the KSME
    • /
    • v.34 no.11
    • /
    • pp.830-835
    • /
    • 1994
  • 화재에 의해 손상을 입은 압력용기에 대해 유한요소법을 이용하여 응력해석을 수행하여 아래와 같은 결론을 얻었다. (1) 응력해석 결과, 압력용기의 자중, 열응력 및 바람의 영향은 내부압력에 비해 무시할 수 있을 정도로 미미하였다. (2) 기하학적 형상변화가 발생한 손상용기의 손상 부위에서의 부식 전\ulcorner후에서의 안전계수는 각각 3.5와 2.1로 손상이 없는 단순용기의 6.3과 4.6보다 상당히 작음을 알 수 있었다. 따라서, 손상 부위에서의 적절한 보강이 이루어져야 할 것이다. (3) 원형 링과 수직 보조대로 보강된 보강용기 모형의 등가 응력값은 상당히 감소되어 화재로 발생한 기하학적 형상 변화에 따른 응력 집중을 줄일 수 있었다. 앞서 정의된 안전계수를 이용 하면 부식 전의 안전계수는 5.3, 부식 후는 3.8 이상으로 증가하였다. (4) 안전계수는 운전 중의 부식 진행과 더불어 두께에 반비례하여 감소하므로, 운전중 부식의 진행을 억제 또는 최소화할 수 있는 방법이 강구되어야 하겠다. (5) 복구방안으로 본 연구에서 해석된 보강책을 채택하는 경우, 작업시 보조대 주위에서의 잔류 응력이 발생되지 않도록 특히 유의해야 하며, 복구 작업 후 철저한 시험검사(비파괴 검사, 스트 레인 측정)가 수반되어야 할 것으로 사료된다.

  • PDF

Three-dimensional finite element analysis of stress distribution for different implant thread slope and implant angulation (임플란트 나사선 경사각과 식립 각도에 따른 3차원 유한요소 응력분석)

  • Seo, Young-Hun;Lim, Hyun-Pil;Yun, Kwi-Dug;Yoon, Suk-Ja;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Purpose: The purpose of this study was to find an inclination slope of the screw thread that is favorable in distributing the stresses to alveolar bone by using three dimensional finite element analysis. Materials and methods: Three types modelling changed implant thread with fixed pitch of 0.8 mm is the single thread implant with $3.8^{\circ}$ inclination, double thread implant with $7.7^{\circ}$ inclination and the triple thread implant with $11.5^{\circ}$ inclination. And three types implant angulation is the $0^{\circ}$, $10^{\circ}$ and $15^{\circ}$ on alveolar bone. The 9 modelling fabricated for three dimensional finite element analysis that restored prosthesis crown. The crown center applied on 200 N vertical load and $15^{\circ}$ tilting load. Results: 1. The more tilting of implant angulation, the more Von-Mises stress and Max principal stress is increasing. 2. Von-Mises stress and Max principal stress is increasing when applied $15^{\circ}$ tilting load than vertical load on the bone. 3. When the number of thread increased, the amount of Von-Mises stress, Max principal stress was reduced since the generated stress was effectively distributed. 4. Since the maximum principal stress affects on the alveolar bone can influence deeply on the longevity of the implants. When comparing the magnitude of the maximum principal stress, the triple thread implant had a least amount of stress. This shows that the triple thread implant gave a best result. Conclusion: A triple thread implant to increase in the thread slope inclination and number of thread is more effective on the distribution of stress than the single and double thread implants especially, implant angulation is more tilting than $10^{\circ}$ on alveolar bone. Thus, effective combination of thread number and thread slope inclination can help prolonging the longevity of implant.

Thermal and Stress Analysis of Power IGBT Module Package by Finite Element Method (유한요소법에 의한 대전력 IGBT 모듈의 열.응력해석)

  • 김남균;최영택;김상철;박종문;김은동
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.23-33
    • /
    • 1999
  • A finite element method was employed fort thermal and stress analyses of an IGBT module of 3-phase full bridge. The effect of material parameters such as substrate material, substrate area, solder thickness on the temperature and stress distributions of the module packages has been investigated. Thermal analysis results have also been compared by setting of boundary conditions such as equivalent heat transfer coefficient or constant temperature at a base metal surface of the package. The increase of ceramic substrate area up to 3 times does little contribution to the reduction(8.9%) of thermal resistance, while contributed a lot to the reduction(60%) of thermal stress. Thicker solder resulted in higher thermal resistance but did slightly reduced thermal stresses. It is revealed by the stress analysis that maximum stress was induced at the region of copper pads which are bonded with ceramic substrate.

  • PDF

Shell Finite Element of Reinforced Concrete for Internal Pressure Analysis of Nuclear Containment Building (격납건물 내압해석을 위한 철근콘크리트 쉘 유한요소)

  • Lee, Hong-Pyo;Choun, Young-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.577-585
    • /
    • 2009
  • A 9-node degenerated shell finite element(FE), which has been developed for assessment of ultimate pressure capacity and nonlinear analysis for nuclear containment building is described in this paper. Reissner-Midnlin(RM) assumptions are adopted to develop the shell FE so that transverse shear deformation effects is considered. Material model for concrete prior to cracking is constructed based on the equivalent stress-equivalent strain relationship. Tension stiffening model, shear transfer mechanism and compressive strength reduction model are used to model the material behavior of concrete after cracking. Niwa and Aoyagi-Yamada failure criteria have been adapted to find initial cracking point in compression-tension and tension-tension region, respectively. Finally, the performance of the developed program is tested and demonstrated with several examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.