• Title/Summary/Keyword: 등가원리

Search Result 65, Processing Time 0.02 seconds

A Study on Principle and Theory of Main Classes in the Library Classification (문헌분류법에서의 주류설정의 원리)

  • Nam, Tae-Woo
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.40 no.4
    • /
    • pp.333-366
    • /
    • 2006
  • The purpose of this study is principle and theory of main class in a Library Classification. According to Sayers, 'The foundation of the library is the book; the foundation of librarianship is classification.' We looked at the between scientific and bibliographic classification, and at the fact that bibliographic scheme is usually an aspect classification. That is to say, the organization of topics is based on areas or activity and the first division of the scheme is into disciplines or subject domains. This first division of classification creates what are called main class. The sequence of main classes is also important. A rough definition of a amin class is that it corresponds to a sin91e notational character. Main classes usually equivalent to traditional disciplines. What constitutes a main class will vary from one classification to another. The order in which the main classes are listed is often discussed at the theoretical level, and some orders are considered to be better than others.

Fault-Tolerant Control of Input/Output Asynchronous Sequential Circuits with Transient Faults Violating Fundamental Mode (기본 모드를 침해하는 과도 고장이 존재하는 입력/출력 비동기 순차 회로에 대한 내고장성 제어)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.399-408
    • /
    • 2022
  • This paper proposes a corrective control system to achieve fault-tolerant control for input/output asynchronous sequential circuits vulnerable to transient faults violating fundamental mode operations. To overcome non-fundamental mode faults occurring in transient transitions of asynchronous sequential circuits, it is necessary to determine the end of unauthorized state transitions caused by the faults and to stably take the circuit from the faulty state to a desired state that is output equivalent with the normal next stable state. We address the existence condition for a proper output-feedback corrective controller that achieves fault diagnosis and fault-tolerant control for these non-fundamental mode faults. The corrective controller and asynchronous sequential circuit are implemented on field-programming gate array to demonstrate the synthesis procedure and applicability of the proposed control scheme.

A Study on Unstable Phenomenon of Space Truss Structures Considering Initial Imperfection (트러스형 공간구조물의 초기 불완전을 고려한 불안정 현상에 관한 연구)

  • Lee, Jin-Hyouk;Baik, Tai-Soon;Shon, Su-Deok;Kim, Seung-Deog;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.63-71
    • /
    • 2004
  • The structural space is gradually wide and is wanting agreeable environment by the requirement and necessity of people who lives modem stage. The building coincides with such requirements and is the high rise building actual circumstances which is doing ultra-large. The confirmed report of the technology to organize great merit is becoming currently considerably important issue in constructing a building field. Thus, this paper examine closely for nonlinear unstable taking a picture uneasiness height of prosperity considering to initial imperfection by a numerical method with a space frame structure of discrete system in large space structure. Based on previous investigation method, this paper induce nodal stiffness matrix of solid truss elements considering geometrical nonlinear using finite element method. In this paper, three types of space structure considered; i) 1-free node space structure, ii) 2-free node space structure, iii) multi-free node space structure. It apply the above examples to a nonlinear program, next, grasp the characteristic of an unstable conduct and the result was a clearing low.

  • PDF

A Frequency Tunable and Compact Metamaterial Peano Antenna (주파수 가변 및 소형 Metamaterial Peano Antenna)

  • Lee, Dong-Hyun;Jang, Kyung-Duk;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.866-872
    • /
    • 2007
  • In this paper, we present a frequency tunable and compact antenna which consists of a first-order Peano curve, two shorting posts, and two inductors which are serially connected between the posts and the edge of the Peano curve. By properly choosing the inductance of two inductors, the operating frequency of the antenna can be controlled without sacrificing the fractional bandwidth. To give good demonstration of the operating mechanism, the equivalent circuit of this antenna is included. To validate the simulation results, we have fabricated the several antennas of being integrated with different inductors, and the measured results show a good agreement with the simulated ones. The measured results reveal that the operating frequency is shifted from 1.47 GHz to 0.586 GHz without the decrease of the input impedance bandwidth. In case of integrating two inductors of 91nH and 470nH, the electric size of the antenna is only $0.0246 {\lambda}{\times}0.0246{\lambda}{\times}0.0114{\lambda}$. The measured fractional bandwidth$(S_{11}{\leq}-10 dB)$ and the radiation efficiency of the antenna are 5.22% and 47.25%, respectively.

A Collision Simulation Study on the Structural Stability for a Programmable Drone (충돌 시뮬레이션을 통한 코딩 교육용 드론의 구조적 안정성 연구)

  • Kim, Myung-Il;Jung, Dae-Yong;Kim, Su-Min;Lee, Jin-Kyu;Choi, Mun-Hyun;Kim, Ho-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.627-635
    • /
    • 2019
  • A programmable drone is a drone developed not only to experience the basic principles of flight but also to control drones through Arduino-based programming. Due to the nature of the training drones, the main users are students who are inexperienced in controlling the drones, which often cause frequent collisions with external objects, resulting in high damage to the drones' frame. In this study, the structural stability of the drone was evaluated by means of a structural dynamics based collision simulation for educational drone frame. Collision simulations were performed on three cases according to the impact angle of $0^{\circ}$, $+15^{\circ}$ and $-15^{\circ}$, using an analytical model with approximately 240,000 tetrahedron elements. Using ANSYS LS-DYNA, which provides excellent functions for the simulation of the dynamic behavior of three-dimensional structures, the stress distribution and strain generated on the drone upper, the drone lower, and the ring assembly were analyzed when the drones collided against the wall at a rate of 4 m/s. Safety factors resulting from the equivalent stress and the yield strain were calculated in the range of 0.72 to 2.64 and 1.72 to 26.67, respectively. To ensure structural stability for areas where stress exceeds yield strain and ultimate strain according to material properties, the design reinforcement is presented.