• Title/Summary/Keyword: 등가단면

Search Result 135, Processing Time 0.032 seconds

On The Added Mass and Damping of Chine Sections in Heaving Oscillation -Comparisons with Equivalent Lewis Section- (배골형단면주상체(背骨型斷面柱狀體)의 상하동요(上下動搖)에 있어서의 부가질량(附加質量)과 감쇠력(減衰力)에 관(關)하여)

  • J.H.,Hwang;Yoon-Ho,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.1
    • /
    • pp.33-44
    • /
    • 1973
  • Chine형 선체단면 주상체의 자유표면에서의 상하운동에 수반되는 부가질량과 감쇠력을 Ursell-Tasai 방법에 의하여 계산하였다. Chine형에서 구하여진 결과는 같은 선체단면적 계수와 반폭흘수비를 갖는 등가 Lewis형의 결과와 비교하였고 선체단면의 형상이 부가질량 및 감쇠력에 미치는 영향을 고찰하였다. Chine형과 등가 Lewis형 선체단면 주상체에 파고가 일정한 횡파가 입사할 때의 상하운동을 고찰하였다. 이상과 같은 계산 및 고찰을 통하여 다음 결과를 얻었다. 1) 자유표면이 부가질량에 미치는 영향은 chine형이 등가 Lewis형단면보다 큰 값을 갖는다. 2) 선체단면적계수와 반폭흘수비가 같은 경우에 감쇠력의 크기는 Lewis form, single chine, double chine순서이다. 3) 선체단면계수와 반폭흘수비는 상하운동에 가장 큰 영향을 미치는 것으로 생각되며, 선체단면의 기하학적인 변형이 운동에 미치는 영향은 중요한 요소가 되질 못한다. 4) 감쇠력계수와 선체단면계수와의 관계는 간단한 관계를 유지한다.

  • PDF

Static and Free Vibration Analyses of Hybrid Girders by the Equivalent Beam Theory (등가보 이론을 이용한 복합 거더의 정적 및 자유진동 해석)

  • Choi, In-Sik;Ye, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.600-606
    • /
    • 2007
  • 3D finite element analyses of a corrugated steel web girder and a steel truss web girder are conducted to investigate the static and dynamic behaviour of the hybrid girders. And the analyses results are compared with those by the equivalent beam theory. The equivalent theory is a theory that all section properties of a truss structure are replaced by section properties of a beam including a shear coefficient. When applying the equivalent beam theory, the shear coefficient of the corrugated steel web girder is estimated as the area ratio of flange section to web section and that of the steel truss web girder is calculated by the equation proposed by Abdel. Static deflections and natural frequencies by 3D finite element analyses and those by the equivalent beam theory are in good agreement.

One-dimensional Hydraulic Modeling of Open Channel Flow Using the Riemann Approximate Solver - Application for Natural River (Riemann 해법을 이용한 1차원 개수로 수리해석 - 자연하도 적용)

  • Kim, Ji-Sung;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.271-279
    • /
    • 2009
  • The objective of this study is to develop the scheme to apply one-dimensional finite volume method (FVM) to natural river with complex geometry. In the previous study, FVM using the Riemann approximate solver was performed successfully in the various cases of dam-break, flood propagation, etc. with simple and rectangular cross-sections. We introduced the transform the natural into equivalent rectangular cross-sections. As a result of this way, the momentum equation was modified. The accuracy and applicability of newly developed scheme are demonstrated by means of a test example with exact solution, which uses triangular cross-sections. Secondly, this model is applied to natural river with irregular cross-sections and non-uniform lengths between cross-sections. The results shows that the aspect of flood propagation, location and height of hydraulic jump, and numerical solutions of maximum water level are in good agreement with the measured data. Using the developed scheme in this study, existing numerical schemes conducted in simple cross-sections can be directly applied to natural river without complicated numerical treatment.

Finite Element Eigen Analysis of Undamped Beam Structure with Composite Sections (복합단면을 갖는 비 감쇠 보 구조물의 유한요소 고유치 해석)

  • Park, Keun-Man;Cho, Jin-Rae;Jung, Weui-Bong;Bae, Soo-Ryong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.691-697
    • /
    • 2007
  • Numerical eigen analysis of beam-like structure can be easily and effectively done by various conventional beam theory-based methods. However, in case of the structures composed of composite-sectioned beams, the application of conventional numerical methods requires one to derive both equivalent material and geometry properties. In the present paper, these equivalent properties are derived by the transformed section method and the test FEM program is coded. The numerical accuracy of the proposed method is verified through the comparison with the ANSYS 3-D model.

On Quasi-Static Crushing of a Stiffened Square Tube (보강된 정사각형 단면 강관의 정적 압괴거동에 관한 연구)

  • Paik, Jeom Kee;Chung, Jang Young;Chun, Min Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.109-123
    • /
    • 1996
  • A series of quasi-static crushing tests were carried out on thin-walled square tube specimens with axial and/or circumferential stiffeners including unstiffened specimens. The effective crushing length and mean crushing strength of the test specimens were investigated. Using the equivalent plate thickness approach, a simplified analytical model for predicting the mean crushing strength of stiffened square tubes has been developed.

  • PDF

The Compressive Strength of Thin-Walled Cold-Formed Steel Studs with Slits in the Web (복부에 슬릿이 있는 박판냉간성형형강 스터드의 압축강도)

  • Kwon, Young-Bong;Soe, Eung-Kyu;Lim, Duk-Man;Kim, Gap-Deuk;Kwon, In-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.189-197
    • /
    • 2012
  • The cold-formed steel stud, which has been used as a load-bearing member of wall panels for steel houses, poses a significant problem in insulation due to heat bridging of the web. Therefore, some additional thermal insulating materials are required. In order to solve this problem, the cold-formed steel thermal stud with slits in the web was developed. However, estimating the structural strength of thermal studs is very difficult because of the arrangement of perforations. In this paper, an analytical and experimental research on thermal studs is described. Three types of studs with different length, pitch and arrangement of slits were tested to failure. A simple design approach was proposed based on the test results. The proposed method adopted the direct strength method, based on the elastic local and distortional buckling stress of plain studs with equivalent thickness in the web instead of thermal studs. The predictions using the proposed method were compared with test results for verification and the adequacy of the proposed method was confirmed.

Behavior of Circular Hollow Section R.C Member with Internal Corrugated Steel Tube (파형강관을 삽입한 중공원형단면 철근콘크리트 부재의 거동에 관한 연구)

  • Im, Jung-Soon;Kim, Sung-Chil;Jo, Jae-Byung;Lee, Soo-Keun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.1 s.8
    • /
    • pp.123-131
    • /
    • 2003
  • An experiment was carried out to investigate the mechanical behaviour of the circular hollow section reinforced concrete member with internal corrugated steel tube. A specimen, 50cm in diameter and 340cm in length, was made and tested by 3 points bending. The test load was increased slowly (quasi static) to the failure or unacceptable deformation. During the test, lateral displacement at mid point and longitudinal displacement of extreme fiber on compressive and tensile side of the specimen were measured. The measured data were analysed and compared with calculated results for the equivalent member without inserted corrugated steel tube. The comparison shows that the flexural strength and ductility of hollow section reinforced concrete members can be improved by inserting corrugated steel tubes inside.

Strengthening Effect of Reinforced Concrete Beams Strengthened with NSM CFRP Reinforcements and Various Reinforcement Details (다양한 보강상세를 갖는 CFRP로 표면매립 보강된 철근콘크리트 보의 보강효과)

  • Jung, Woo-Tai;Park, Young-Hwan;Park, Jong-Sup;Kim, Chul-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.781-790
    • /
    • 2011
  • This paper contains the experimental results on strengthening effect of RC beams strengthened with NSM CFRP reinforcement and various strengthening details. A total of 14 beams have been tested to analyze strengthening effects of NSMR with various reinforcement details. Variables were cross-sectional shape of CFRP reinforcements, strengthening areas, grooves the number and location etc. Test results revealed that failure modes of NSMR showed two types. One was bond failure at interface between concrete and filler and the other was CFRP rupture. Also, failure mode of specimens with two grooves occurred premature bond failure because of superposition of failure surfaces at concrete around grooves. failure mode of MI specimens considered the equivalent section have changed bond failure to CFRP rupture and CFRP efficiency has improved 83% to 100%.

Research of Residual Strain Calculation of Prestressed Concrete Beam Element (프리스트레스트 콘크리트 보 부재의 잔류변형 산정에 대한 연구)

  • Lee, Duck-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.555-562
    • /
    • 2014
  • To perform performance-based seismic design of buildings, it is necessary clear goal for usage and stability after an earthquake. To clear this goal, it requires a review of the constituent material of the building and, in particular, a member used as an indicator of the residual strain is useful. There are more usage of prestressed concrete because of prestressing steel witch has characteristics of the origin-oriented. In this study, the goal is estimating of residual strain on the prestressed concrete beam member. The expression for angle of deformed prestressed concrete beam member was obtained from using of curvature on the critical section and the equivalent plastic hinge length based on 'equivalent plastic hinge length method'. Considering the balance of strength and deformation conditions, suitable analysis values were derived from 'split Element Method'. Through various parametric studies, various factors affecting the residual strain were decided. Based on the results of this study, it is expected many researches will be proceed in the future.

Crack Propagation Analysis Using the Concept of an Equivalent Plastic Hinged Length (등가소성힌지개념을 이용한 지하구조물 균열진전해석)

  • Park, Si-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.115-124
    • /
    • 2009
  • In this study, a numerical analysis technique was newly developed to evaluate the damage propagation characteristics of concrete structures. To do this, numerical techniques are incorporated for the concrete members up to the compressive damage due to the bending compressive forces after the tensile crack based on the deformation mechanism. Especially, for the compressive damage stage after the tensile crack, the crack propagation process will be analyzed numerically using the concept of an equivalent plastic hinged length. Using this concept, it can be established that section forces, such as axial forces and the moment cracks takes place, can be related to the width of the crack making it possible to analyze the crack extension.