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On The Added Mass and Damping of Chine Sections in Heaving Oscillation

——Comparisons with Equivalent Lewis Section—-

by
J.H. Hwang*, Yoon-Ho Kim**
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Nomenclature damping force

N.
: hydrodynamic pressure
N
T

: litud, ti .
4 amphitude ratio sectional area of cylinder
B: beam draft
ra
Co: added mass coefficient (w—c0) r
: kinetic energy
. .. added mass _ | ‘
C1(&): added mass coefﬁcxent—m-—K4 Co v: heaving velocity
Ey:  exciting force due to incoming wave 7: amplitude of progressive wave
F: hydrodynamic force . dampin
R . #(&): damping coefficient=_G3MPINE____

g gravitational acceleration w+ ¥ pgn(B/2)?
h: amplitude of forced heaving . g B_& B

&o: 3 2 3
Hy: half beam to draft ratio
Hpy: heave response e mass density
K:  wave number T sectional area coefficient
K,:  free surface coefficient of added mass ¢:  velocity potential
M:  scale factor v stream function
my: added mass due to heave oscillation ® circular frequency
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Abstract

The added mass and the damping for two-dimensional cylinder of a curvilinear section

with chines, either single or double, in heave oscillations on the free surface are calculated

by the Ursell-Tasai method (1,2].

The results are compared with that of the equivalent

Lewis section which has the same sectional area coefficient and the half beam to draft

ratio, and the effects of the shape of the sections on the added mass and damping are

investigated.

The heave response of a cylinder of a chine section and that of the equivalent Lewis

section in regular beam sea are calculated, and the differences of heave motions between

those cylinders are investigated.

1. Introduction

The added mass and the damping of a cylinder
which has a chine section may be important with
respect to motions of fishing boats and high speed
boats. Prof. C.W. Prohaska[3] and Prof. K.C. Kim[4]
have studied the added masses of those ship sections
using the Bieberbach transformation, when the wave
number is infinite. In this paper, the free surface eff-
ects of these ship sections in heave oscillation are
investigated by using the Bieberbach transformation

=t Dtape - o) ¢y

and the Ursell-Tasai method[1,2].

The wave excitation forces in regular beam sea are
also calculated by using the Haskind-Newman relation
[5]. The heave responses in regular heam sea are
then calculated.

The results are compared with those of the equi-
valent Lewis section which has the same sectional area
coefficient and the half beam to draft ratio, and the
effects of the change of the section on heave motion
are investigated.

It seems to the author that hydrodynamic forces
with respect to heave are mainly characterized by the
sectional area coefficient and the half beam to draft
ratio, and the other geometrical characteristics have
secondary effects on the heave oscillation.

2. Formulation of the Problem

9.1 Definitions and Fundamental Equations
Let an infinite long cylinder be on the free surface

of the water, and oscillate vertically about initial

position, Coordinate systems are shown in Fig. 1.

Z-Plans % ~Plane

—

Fig. 1. Coordinate Systems; Mapping of Contour in

to a Circle
Effects of viscosity and surface tension may be neg-
lected. If the motion is started from rest, the fluid
motion is irrotational and a velocity potential ¢(z,y,2)
exists which satisfy the Laplace equation:

9, P _

az? oy’

in the water. €))]

When the amplitude of the oscillation is small, the
linear assumptions may be justified. Neglecting the

second order terms, the free surface condition is exp-

ressed as
i P B -
52 5y =0 at lzI> 5 ¥=0 3

where g is the gravitational acceleration.
The heave oscillation is assumed to be stationary one,
and is given by

ya=h cos(wt+8) <y
where ys, h, w and § are the displacement, the amp-
litude the circular frequency and the phase of the
forced heaving, respectively.

The continuity condition on the surface of the cy-
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linder then, becomes as

9 = _hosin(ut+d)2=v 9 oncC (5)
an on on

where C refers to the mean position of the cylinder
surface. Let the depth of the water be infinite. The
following condition must then be satisfied
%
day

S 0

when y —— oo (6)

Let the cosine and sine parts of the velocity potential
be ¢. and ¢, that is
¢=¢.(x,y) coswtt¢:{z,y) sinwt &)
Substituting (7) into, (2), (3), (6) and (6), the
following ejs. are obtained,
. + %P, =0, %; _i_,%%;‘.:o
in the water (8)

e Cho 10—
Kge+- e o, Kpt-2e =0

at 1zi>5, y=0 )
9. coswt + s Ginwr=v-92_ on C (10
on an an
9 g s __,
3y 0, 3y 0
when y— co D

In addition to those conditions, the velocity potential
¢: and ¢s must satisfy the appropriate radiation con-
dition of the outgoing progressive waves at|z]=co[1].
Let ¥c(z,y) and ¥.(z,y) be the cosine and the sine
parts of the stream function ¥ (z,y,£) corresponding
to the velocity potential ¢ (x,y,£), that is
U{z,yt)=V.(z,y,t)coswt+¥(x,y,t)sinwt (12)
The relations between ¢. and ¢s, and ¥ and ¥, are

given as

. _ V. ops _ a7,
ax ay ' ax oy
0. _ o, 3y _ oW, in the water. (13)

y e—=

ay ax
From (10) and (13), the boundary values of ¥, and
¥, are prescribed as follow:
¥ coswt+ ¥ sinot=—Vz on C, 14
2.2 Mathematical Representation of the Section
Contour (4]

oy oz

As a special case of the Bieberbach transformation

(1), the following two-parameter family is considered:
L=l i Y g L0 (15)

where z=z+iy and {=ie%e

35
refer to the physical plane and the mapped plane,
respectively (see Fig.1). If the appropriate conditions
are satisfied, the region occupied by the water and its
image to z-axis in z-plane can be transformed onto

the outer region of the unit circle in {-plane, and the
z-and y-axes in z-plane corresponds to 6:i%, =0
in {-plane, respectively. The following conditions may,
then, follow:

n and m=positive integers (m<n)

M=npositive number (16)

am-1 and ag,_1=real numbers.
Furthermore, to obtain a useful section contour, the
following conditions must be satisfied, that is

Re [z(—g-)]z Re [2(6)]1>0

Im[z(0)] > Im[z()] >0
From the transformation (15), the section contour

0<9< 7 UM

C is given in the term of 4 as

Txizsinﬂ-l— (=)™ gy _ssin(2m—1)0

+(—=1)"" ag_15in(2n—1)8 (18)

—XI:cos(H- (—Dm™agm-1c0s(2m—1)0

+(~1)" ag.1c0s@r~—1)0
Let B, T, 25, Hy and ¢ be the beam, the draft, the
sectional area, the half beam to draft ratio and the
sectional area coefficient of the cylinder section. These

can be written in the terms of M, asm-1 and a@g.y as

follows:
B =M+ amitan 19-1)
T=M(1+(—D"apm1+(—1)"aza-1] (19-2)
_1
—T§zdy
7/ B\ 1-(2m—1)a%m_1— (2n—1)a%., _
=7(7) QA+ amm-1+az-1)? 19-3)
- B/2 __ 1+a2m—1+ﬂzn-1 .
Ho= T ~ 1+(—Dmagm-1+(—=D"azm-1 (19-9)
g S
~ BT

= Z~ [1- (Zm—l>a22m—1— 2n— Da%a-1]

{1+ (=D agm-1+ (=1 "azs1} (14 azms1+azsm1)
(19-5)
In general, asm_1 and ag..1 are determined from (19-4)
and (19-5).
In this paper, (a1, ar) and (ay,411) families are
considered. (a@i.ar) and (ay,ay) families corresponds
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to the single and double chine sections, respectively.
The conditions of the mapping(17) are given in its

explicit form as

1
<apg<-—L
0<az-1 i

0<ap <21l

From this condition, ¢ and H, can not be taken

41:0
for n=4,6. 20
a1#0

arbitrary. For each H,, ¢ must satisfy the inequality:
Umin<H0>SOSa'max<Ho> (21)
Tmin(Ho) and omax(Ho) are given as(4]

Tmis (H)=ZHy [1-( ’fEL)Z {1+ ) mas)

“Ho+1
Hy—1
..<2n_l>(a2n_1)2max ] / [1+('g‘;T1"){1+(d2n_1>max}
+ (azn—l)max] : fOI' 71:4, 6, (22)
Tmax(HoO) =7 for n=4,6, (23)

where (42.-1)max means to take the maximum of @z
determined by the inequality (20). In this paper, Ho
is taken to be unity, and it, then, follows:

Omin(1)= [0. 5154
0.6000

for n=4,

@

for n=6.
3. Numerical Procedures

By the transformation (18), the free surface y=0

in z-plane corresponds to 0=i% in Z-plane, and the

free surface condition becomes as

1"‘(2771-“‘1)42»1—1_(2"“‘1)(12"—1 —_§¢ —
%o { 1+agm-1+azm-1 }¢ +

at 0=i—;~ (25)

where  4=K g- (26)

The singular velocity potentials which satisfy the

Laplace Eq. and the free surface condition are

obtained as

= T-2to 9 §o
$i [e cos2lf+ 1+azm-1+aza-y

e—(Zl—l)a (_l\m—l(z __l>
£ 2A—-1)8 ) mn Aom—1_
X{ =1 cos@-1io+ 2+ om—1

24+2m—1
Xe™@Habe cos(al+an—120 | | @n

sinwt

X em @ tmDa cos(9]+2m— 194 1" @2n—1ag.

J. of SNAK

=1, 2, 3, «ee
The stream function ¢y corresponding to the velocity

potential @y are given as

= [e2tag; oG
b [e sin26 4 CFamia
_e"(ZI—l)a_ s or <-1)m_1<2m'—m2ﬂ;}_
{ oo Sn@-Do+ St om—1
— 2+ 2m-D g _ (=D1(2n—1)ag-1
Xe m=Degin(21-+2m—1)0+ it om—1

coswi

X~ B 2nDagin (2 2n--1)8 } :l

sinw?
l:ll 2, 3’ ...... (28)

To satisfy the radiation condition of the outgoing

progressive wave, the appropriate wave making
singularity must be added to the sets of the velocity
According to the Ursell-Tasai method

1,27, a source singularity at the origin of z-plane is

potentials ¢o.
taken as the wave making singularity. The stream
function ¢(x,y,t) is, then, expressed as
¢Cx,y,t):—fz [WC(K, z(a, 8), yla,d))coswt

+¥(K, z(a,8), y(a,d))sinwt

+coswt§.‘ pal&o)pulbo, a,d)

+sinot DauGduGoa ] @9
U.(K,z,y) and ¥ (K, z,y) are given as
U.(K, z,y)=ne *sinKz
ey (e e
W:(I\,:r,y)—-so RTE {ksinky+ Kcosky} dk
—ne~KrcosKz 30
where 7 is the amplitude of the diverging wave, and

a8 and gu(%) are the
Substituting (29) into (14), the boundary conditions

integral constants.

on C is obtained as

Z—‘;’E~V<eo, £z(0,0)1=¥ (K, 2(0,0),5(0,8)) coswt

+¥ (K, z2(0,8), y(0, 8))sinwt

+ coswt ;}pzz Go)du(ée, 0, 8
+sinwt f‘;}qzx(&o)sﬁzl(&o, 0,0) 3D

< X
at 0__ 2—
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gv [ V(ém,x(o —’ZL)]
=u,(K, (0, 7). 5(0.5-)) cosar
+0.(&, (0. %) ¢ —))sinwt

+coswt;EIsz(Eo)¢zl(Eo, 0, —”2*)

+smwt2_.qz:(5o><l’21(5°: 0, 2) @2

Eliminating V(&, £) from (31) and (32), the following
equations are obtained:
¥eolbo, aom-1, G2a-1, )
—[sin—{(~1)"asm-15in(2m—1)8
— (=1 "azs-15in(2n—1)01/[1+ aam-1F aza-1]

X Wca(fo, Am-1, A2n-1, "72r’ )

= 229 60) fr (G0, oo, Ganr, 6) (33-1)

Vso(&o, azm-1, Aza-1,6)
—[sinf— (—D™agm-1sin(2m—1)8
—~ (=D "agy-15in(2n—1)61/[1+ asm-1+ asn-1]

T
X (EO, A2m-1, A2n-1, T?‘*)

= :Ajl.:'qw(fo)fzz (&, azm-1, azr-1,6) (33-2)

where
¥ o (b0, azm-1, a2n-1, 6)=¥.(K,z(0,6),50,6)
¥so(o, Gam-1, azn-1, ) =¥ (K, z(0,6),5(0,6))
Fulo, @am-1, Bon-1,0)=

~ [#utto 0, 0>—j—é(‘::—-%f’>7¢u (60 0, )]

& { sin(2l—1)9

=— |sin 216
[sm 20+ 1+agm-1Fazn-1 2l—-1

(=1 (2m— Dagm-1 sin(2l+2m—1)4

+ 24+2m—1
(=D 1@n—1)am-1 -
+ i sin(2l+2n 1)0}
_ (=1)"% { 1__
(1 +amm-1+a-1)* 2—1
_ Q@m—Daym-y _ (2n—1)as.1 }
2l142m+1 2l4+-2n—1

x {sinﬂ—(—1)”‘azm_1sin(2m—1)0

—(—1)"ag.-i5in(2n—1)8 } ] (34

37

The unknown pu(&) and gu(&) are determined by
solving the equation (33-1) and (33-2), respectively.
Let A be the amplitude ratio:

amplitude of forced heaving
From (4) and (32), 4 is given as

1 23 S
A= Vag+ By 36

where

Ae=Teo (8 arm-ty azr, §)

_. amplitude of progressive wave :%E (35)

b Sopue (D o
=t 1+ awm-1T3azn-1

(271"‘1) agn-1 }
2l4-2n—1

_ (2m—1) Aom-1 __
214+-2m—1

1
x { -1
(37-1)

- 1yt o _
+.‘Z;1:'t121(50) (=D 1+asm-1+azn-1
(2rn—1) agn-1 }
2l4+2n—1

(@m—VDagm-1 _
2l4+2m—1

=
37-2)

The velocity potential ¢ (z, ¢ corresponding to the
stream function ¥'(z,y,t) can be easily derive from

(29), that is
8(z, 3, 0)=51[0(K, x(a, 0), 5(a;, 0))cosat

+(D;(K, z(a,8), y(a,6)) sinwt

+COSO)£§P2{(&>¢21(€0, a, §)

+sinwt§'qu($o)¢2z(fo. a,0), 38

where
¢.(K, z,y)=ne *cosKz

(K z,y=— { kcosky— Ksinky } dk

~ g kx

o K2+#
+re KrsinKz 39

From the expression of the velocity potential ¢, the

hydrodynamic pressure p:—p%‘f— can be derived.

Hence, the hydrodynamic force acting on the cylinder

in the direction of y-axis can be expressed as follows:
F ——-(g?’] )pB { Mycoswt — Ngsinet) . 40)

Mo(Eo, @am-1, @zn-1) and No (&o, @zm-1, @zs-1) are given

as
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2
M= j‘o‘a)so(fo, Qm-1, dan-1, 0)
x [{cosf+ (—1)™ 1agm_1cos(2m—1)0
+ (=" 1a5,_1c05(2n+1)6)}
/(1 +42m-1'*'d2n_1>] X do

U P
" 1+amm-1+az.-1 I‘,Z_'_lc 15 qu o)

% { 1, @m—1)tagmy _ (2n—1)%az.y }
42 —1 412—'(2771 1)? 4!2'—(271—“1)2

+,E_ B o
4 l+aam-1tass-1 {Q2
F+(—1)" asm-1gam+ (— 1" 23, 1g2n

F (=" 7gs0-m (221~ 1) Agm—1830-1 } ]

(41-1)

No= jz‘@o(&, Qym-1, Aan-1,0)
x [{cosf-+ (—1)" agm_1c08(2m—1)8
+ (=D ey, 1cos(2n—1)6}
[/ (1+asm-ataze-1)] X d8

&o 1/ 1NI-1
L e — [Q( D pulo)
1 @m—1)%am-1 _ (2n—1)%ag,1
x{ BT T A —lom—1)? 4l?—(2n~1)"2"}
E o
Y TFamatans {"2

+ (D" agm-1pam+ {(—1)" 2y, 15,

+(=1D"" pagp-m (2m—1) aZM—la2n—-1}] (41-2)

where
Deolo, azm-1, azu-1, ) =P (K, z(0,0), (0, 8))
D100, a2m-1, azn-y, ) =P, (K, z(0,6), ¥(0, ) (42)
From (4), (32}, (37-1) and (37-2), the velocity
ddy‘ and the acceleration —dyz" of the forced
heaving can be written as

o =( 2L ) | — AuCeoycosor—Bu(eo) sinar)  (43)

Lor =(281) | Astewsinot—Buleo) cosat ] (49)

From (40), (43) and (44), the hydrodynamic force

can be expressed in its component form as
F=-2 p< )( MoBo+ NoAo ) diyy

T AFT By dit
o) (M) W
Hence, it follows that
added mass=2 p(-2 ) (2ofrt-Todo ) 46)
damping:2pw(§)z(-—yﬁ%_l—?l%'l) 4n

1. of SNAK

Let the free surface effect Ky of the added mass be

defined as

K= added mass_
% pﬁ( B) Co (48)

added mass in case of w—oo (49
1 ,(_B)Z ’
2PM\Z

K, is, then, obtained for (aj, as.-1) family as

K= : ( MoBo+ NoAo ) (1+as+as._1)?

A02+B0 (l"i‘al)z%j@lvml)a 2n—1

for n=4, 6. (50)
From

where Co=-

the consideration of the energy transmission
by the diverging waves, the followingr elation must
hold [i,2]:

2
'R%Z" (MoAo—NoBo) :é J_’g_(;’?i (51)

The left hand side of (51) refers to the work done
by the cylinder, and the right hand side refers to

the average energy flux by the diverging waves.

4. Results of Calculations

Numerical calculations were conducted for the section
contours shown in Fig.2. In the present work, the half
beam to draft ratio Hp is taken unity, and the effect
of the sectional area coefficient ¢ is calculated.

The exponential integrals in (30) and (39) are
calculated by using formulae given in Appendix 1. The
infinite series in (29) and (38) were truncated at I=6.
The least square method was used to solve the linear
equation for the integral constants pui(&o) and g (&o),
(I=1,2, ,6), and the component of the matrix were
integrated numerically by using the Simpson’s rule.
The numerical calculations were checked by the

equation(see Eq. (51)):

2
Error = J%‘ ~ (MoAo— NoBy) (52)

An example of the calculation is given in Table 1.

In Fig.3-1~3-4 and in Fig.4-1~4-2,
face effect Kj,
ing force of the chine sections are compared with

the free sur-

the amplitude ratio A and the damp-

those of the equivalent Lewis section which has the

same_c and Hy with the chine sections. It seems to
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Table 1. Accuracy of the numerical calculation “.:FF;:)'JIS .
single chine %;af[ 212,7, :509‘&
0=0.75 Ho=1.00 1=6 CHRORT
e 1003 [ 1501 956
%o 02 0.4 0.8 1.2 S| el e
T T ST T T T e e e 10171013} 1.048
A | 0.206 0.497 0752 0.8 | v e
K 1.033  0.730  0.606  0.624 SIANU AL
Error(107%) 1 4 10 25 T
ST "‘* e e [ == s
&o I 1.6 2.0 2.4 3.2 !
A 0.960 0.995 1.009 1.007
K, . 0.667 0.711 0.748 0.805 :
Error(1079) ; 63 128 186 114 T
1=10 =12 -
o - s T
50 3.2 3.2 :
A 0.956 1.0017 1.0010 P e
K 0.876 0.8047 0.8047 0 Lka T SR 2 wan ramd T ~‘e =
Error(107%) 441 41 13

B R - g L ara 2
Fig.2. Section Contours Fig. 3-2. Ki, A vs. &; Hy=1.0, ¢=0.65
the author that there exists any significant differen- mass coefficient C; and the damping coefficient g are
ses. shown. These quantities are in a rather simple relation

In Fig. 5-1~5-3, the effects of ¢ on the added with .
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575 84k
Toet s

1508

| 2696|2296 [19¢3 |
4 1040 1201'!2301|44|

Fig. 3-3. Ki, A vs &y Ho=1.0, 6=0.60 Fig. 4-1. N vs & Ho=1, 6=0.60 and 6=0.75

Hoal.0 o =0 52
720 52
L. 0.2 0.4 0.8 1.2 1.6 2.0 2.4
o e de? 535 8811113613331 1489[1617
! K, 1381 8481 708 648 B39 649 | 665
o
N 3288 (3545[3398[3.075(2748[2455(2200
n 304 528 85110891277 ) 1436|1577
& T, [1906] sas| 762] 737] 738| 756] 774
a
! N 322403411 13186920822)2521]2282{2093 ——— — T T e

- Less T
g
1

I —
'h"Tj +

JERSNES FRNN SpUti (S S

8 20 22 24

¢=0,52 and ¢=0.65

N vs & Ho=1,

Fig. 3-4. Ki A vs & Ho=1.0, 0=0.52 Fig. 4-2.
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Fig. 5-1. Ci, g vs. &; Lewis Form

Fig. 5-2. Ci, p vs. &; Single Chine Form

5. Heave Response in Regular Beam Sea

In section 4, the effects of ¢ on Ky, 4, C; and g
are shown numerically. In this section, the heave

Lo
o .

LG ik
L

41

1

o Lo . ! vt
i BN 16 502,00 0 2.4
e Fig 53N M

Fig. 5-3. Ci, p vs. &; Double Chine Form

response in regular beam sea is discussed.

Wwit)=Y,eH
J RN

X
3

incoming wave
¢‘ =__|QEeKy~in
Fig. 6

Let
yu(2)=Yge'*!

(63

be the displacement of the ship in y-direction. The
equation of the vertical motion can be written as

my§ -+ pg Byn=—mnu¥u— Nujn+ Ene’™’,
where m=pS=po BT
B=beam,
and

mu=added mass due to heave oscillation

k- code(3)

Ng=damping =-£&_|Ax|?

#=damping =5 |Ax]

Ep=exciting force due to the incoming wave
=39 g,
= Ay ok

Gy

(55)

(56)
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Substituting (53)
response Hy(80):

Hy (&) =%’« (57

is derived as

and (65) into (54), the heave

H, Y S
u(8o) (—(n+mu)w*+ Nrio+pgB)

= o 38
- [UBT+K4C077:(—Z-) |k2+i1 2512+ KB

Hence, Hy (&) is given as

|Hu 6)1=14n1 / [ { KB-a(BK) (TK)
~KCopr(K F) )+ an] " (@
In Fig. 7, numerical results are given for a single
chine section, double chine section and the equivalent
Lewis form section which have the same sectional
area coefficient 0=0.60. The difference between these
are not significant in spite of the large differences of
their section contours. To the author. It seems to

be an interesting phenomena.

Fig. 7. Heave Response in Regular Beam Sea;
Hy=1, ¢=0.60

J. of SNAK

6. Conclusions

The following conclusions are deduced as a result
of the present work.

(1) The free surface effect of the added mass of
the chine section, either single or double, has a
larger value than that of the equivalent Lewis section.

(2) If the sectional area coefficient and the half
beam to draft ratio are the same, the damping
coefbcient becomes larger in the order of the equivalent
Lewis form, the single chine and the double chine
in the range of low circular frequency.

(3) The sectional area coefficient and the half beam
to draft ratio seem to have the primary effects on
the heaving motion, and the effects due to the other
geometrical characteristics seem to be secondary.

(4) Added mass coefficient and damping coefficient
of heaving oscillation seem to be in a rather simple

relation with the sectional area coefficient.
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Appendix I
Wo:vi%[Q";(K,:r,y)coswt+W,(K,x,y)sinwt] (A-1-1)
V.=n:e %7 sinKz

U= j . "kgi—l—ixf' {ksinky -+ Kcosky) dr—ne X YcosKzx

$o= i(% (¢:(K,x,y)cos0t +¢.(K,z,9)sinewt)  (A-1-2)
po=m+ e K. cosKz
s=— jo K2+ 5 {xcosey~ Ksinky} dr+-nme ¥sinKz

Evaluation of the exponential integral

j“’;cqs B:i:i;izsin Bx | -axg,
— 1 e~ (A~iB)x 1 —~(A*iB)x
2 )T ety e
1 '{—:ejA xB)x 1 Ie—(A+x'E)x
2 152 o) T ire
{leA’IB
Z,=A+iB

where

fotie

=sin(Z1)Ci(Z1) ~cos(Z1)S:(Z1)
+cos(Zl)L
f: f+ 5 dz=sin(Z)Ci( Z2) —cos(Zp) $:i(Z)

+cos(Zy) %

- ~Zx .
j ze L = —cos(Z)Ci(Z)) —sin( Z1)Si(Zy)
o 1+x?

+sin(21)%
CiZy=r+nz+ | costml gy

{

S{(Z)= S ;i‘t’id:

_ gl e o s eri4
—=¢ [ Z. 3 Si(Zp+ 5
‘ Vo €4 T
2 + 2 2]
where
dh—e '{C(Z) ""{C-(Zé)i—Ci(Zz)L

=sinA { r+—;—log(A2+B2)

+ S qyn CATHBY)" - cos2n 8
%'( D 2n(2n)! B }

_1_§_ ( Dr (A?+B?)"sin2n
+cosA{tan yy o (2n! }
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= —cosA yo (=" (A4 B 7 cos(2m+1)0
oA e F 1A D!
(~1) (A48
Ay (=17 +B% 2 sin(2n+1)6
FeindZd ot D@D
Hence
= cosBz+asinBx | 4,
Xo T+t e~ 4% dr
—p B [sinA {T+]Og(A2+B2>f
4‘2_3’/(11 "(A?+B?)"cos2nf
==t 2n(2m)!
) 2n+1 )
oq (=1)(A+ B 7’7’77775111(271-1—1 6
+f§1") Cn+1)(2a+1)! }
. 2 -1 B (=1)"(A%-+ B%)"sin2n8
+cosA { - tan™! —+- MZSX' Snlom)]
= (=1 (A2+B2) ikn cos(2n+1)6
= @a+1D(2n+ D! H (A-1-3)

Appendix II

The Haskind-Newman Relation [5]
Let ¢; be the velocity potential of the incoming

wave:
$i=— ff; FeKytiKa (A-2-1)
. -2 i Lo
Lj ~7 1 h X
s
y
Fig. 8

where h: amplitude of incoming wave

Let ¢4 be the diffraction velocity potential.
Then, the velocity potential ¢ of the diffraction
problem due to ¢:

=it ¢da

: gi = —ba;l- (pitoa) on C

(A-2-2)
(A-2-3)
The velocity potential ¢z of the forced heaving of
the unit velocity amplitude is defined as

On — 0y on C

on on
The heave component Eg of the wave excitation force

(A-2-4)
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due to the in coming wave is

Eu= (-0 )as

where pei*’=hydrodynamic pressure

EH:iwpIc[(tﬁi‘f‘gﬁd)%]ds

eHZ%ch[%%&-{—mﬁ%} ds
_j ¢' 6¢H _3_@;1_] d

by Green’s theorem
= [ [or 2 g 204,
[0 8r  o

by Green’s theorem

(A-2-5)
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Fig. 9
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The assymptotic form of da is given as

— £ ( An K y—iKx s 00

@ iw

Pur~ .
__‘g_(___ﬁ_ﬂ )BKﬁ-‘K* 00

@\ iw

where A: wave amplitude ratio including the phase

difference.
Then, at z=R,
s 3¢H o _04i
ox

)eKy—in]

) Ky~ .K:] . [%EeKy*%viKz]

~— [_A,,;L;;exwxx[ __g(%(_(%_

f-

= 20 z. . FeK
KAH he?Ky

at x=R_

& 3¢11
~ [_lg‘EeKﬁiKz] . [ﬁﬁ(% )eKy+in]

w w \ i
— [_J;_og__(.éi)eKyHKx] [%{ﬁel{_yﬁKx] =0

i
Hence, the following relation between
excitation force due to the incoming wave and the
amplitude ratio for heave oscillation is derived:

— gy 2 6¢;

the wave

B ([0
R_—oo
o J2 Lo )
:__,‘,2[ h§ ey dy———zz—/{ﬂﬁ
En= iw’f Auh

(The Haskind-Newman Relation) (A-2-6)



