• Title/Summary/Keyword: 등가구면굴절력

Search Result 43, Processing Time 0.034 seconds

A Study on the Refractive Power of School Children Who are Classified in Low Income Family (저소득층 분류에 따른 학동기 아동의 굴절력에 관한 연구)

  • Lee, Wan-Seok;Ye, Ki-Hun;Shin, Bum-Joo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.373-383
    • /
    • 2013
  • Purpose: In this study, we analyzed refractive power of school children in low income family. Methods: We have done a comparative analysis with 112 subjects of low-income of 17 elementary schools in the Yeongcheon area and low-income children less than -6 D of refractive errors from the Korean National Health and Nutrition Examination Survey Report 2010. Results: Spherical equivalent (SE) with low-income group of nation was -1.99 D for right eye and -1.81 D for left eye, while high income group of nation showed -1.26 D and -1.21 D for right eye and left eye respectively. The SE with low income group in Yeongcheon area was -1.85 D for right eye and -1.81 D for left eye. The SE with orphan was -2.75 D and -2.42 D. Single parent family was -2.10 D and -1.96 D, and two parent family was -1.75 D and -1.73. Conclusions: The lack of attention to children eye care may be one of cause for myopia, so the role of the parents and teacher is very important. However, limited role of parents to children due to low income, it is necessary to provide an institutional strategy and social interest to prevent children vision' in low income family.

Evaluation of Reliability for Combined Refractive Power of Lenses in an Automatic Phoropter (자동포롭터 내부렌즈의 합성굴절력에 대한 신뢰도 평가)

  • Lee, Hyung Kyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.4
    • /
    • pp.501-509
    • /
    • 2015
  • Purpose: To evaluate the reliability of refractive power by comparing the marked refractive power in an automatic phoropter and actually measured spherical/cylindrical refractive power. Methods: Actual refractive power of minus spherical lens and cylindrical lens in an automatic phoropter was measured by a manual lensmeter and compared with the accuracy of marked refractive power. Furthermore, combined refractive power and spherical equivalent refractive power of two overlapped lenses were compared and evaluated with the refractive power of trial lens. Results: An error of 0.125 D and more against the marked degree was observed in 70.6% of spherical refractive power of spherical lens which is built in phoropter, and the higher error was shown with increasing refractive power. Single cylindrical refractive power of cylindrical lens is almost equivalent to the marked degree. Combined spherical refractive power was equivalent to spherical refractive power of single lens when spherical lens and cylindrical lens were overlapped in a phoropter. Thus, there was no change in spherical refractive power by lens overlapping. However, there was a great difference, which suggest the effect induced by overlapping between cylindrical refractive power and the marked degree when spherical lens and cylindrical lens were overlapped. Spherical equivalent refractive power measured by using a phoropter was lower than that estimated by trial glasses frame and marked degree. The difference was bigger with higher refractive power. Conclusions: When assessment of visual acuity is made by using an automatic phoropter for high myopes or myopic astigmatism, some difference against the marked degree may be produced and they may be overcorrected which suggests that improvement is required.

Study on the Analysis of Corneal Variation by Refractive Error (굴절이상에 의한 각막 변화도 분석에 관한 연구)

  • Lee, Hae-Jung;Oh, Hyun-Jin;Jung, Mi-A
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.485-490
    • /
    • 2014
  • The purpose of this Study investigated corneal power, corneal astigmatism and corneal axis according to spherical equivalent of refractive error. We measured spherical equivalent, corneal power and corneal astigmatism in 100 subjects from January 2014 to July 2014. Measured spherical equivalent of refractive error were $-3.01{\pm}3.79D$, corneal power of $43.79{\pm}1.60D$ and corneal astigmatism of $-1.17{\pm}0.79D$ respectively. Prevalence of spherical equivalent of refractive error were as follows : myopes (61%), emmetropes (22%), hyperopes(17%). Corneal astigmatism of refractive error greater than +0.75D was 63% and prevalence of corneal astigmatism were as follows : with-the-rlue astigmatism (84.13%), against-the-rule astigmatism(9.52%) respectively. Corneal power by spherical equivalent increased from hyperopia to myopia. Between spherical equivalent of refractive error and the mean corneal power was significant correlation(r=-0.25, p=0.01). A correlation were found between corneal power and spherical equivalent of refractive error in adults. They have the highest distribution of prevalence myopia among the refractive error. When the refractive error was increased, we found that corneal power was steeper. It is recognized that this can be refractive error factor and correct visual function is considered.

Study on Evaluation of Refraction Measurement for Clinical Application (임상적 적용을 위한 굴절력 측정의 평가에 관한 연구)

  • Yoo, Jong-Sook;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.1
    • /
    • pp.55-62
    • /
    • 2006
  • Clinical evaluation of the Closed-view autorefractor and Open-view autorefractor was performed to examine validity and repeatability compared with subjective refraction. Measurements of refractive error were performed on 126 eyes of 65 subjects (aged $26{\pm}7.5$ years) subjectively noncycloplegic. Intersession repeatability of the Closed-view and Open-view were also assessed on all 65 subjects together with Intersession repeatability on 7 to 14 days intervals. Spherical powers and spherical equivalent values of subjective refraction and autorefractions by Closed-view and Open-view were analyzed by paired T-test. The mean spherical powers of subjective refraction, Closed-view and Open-view were determined to be $-2.125{\pm}2.155D$, $-2.146{\pm}1.907D$, $-2.117{\pm}2.121D$, respectively. The mean spherical equivalent values of subjective refraction, Closed-view and Open-view were determined to be $-2.362{\pm}2.204D$, $-2.391{\pm}1.967D$, $-2.366{\pm}2.162D$, respectively. The results showed that the refractive errors as measured by the Closed-view and Open-view were found to be similar to the subjective refraction in all components.

  • PDF

Analysis on Ocular Components Variation with the Difference of Both Refractive Errors (양안 굴절이상 차이에 의한 안광학상수 변화도 분석)

  • Lee, Hae-Jung;Lee, Eun-Hee;Jung, Mi-A
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.435-440
    • /
    • 2016
  • The aim of study was to provide the preliminary data to find out characteristics of the difference between both refractive errors through analysis of ocular components variation. We measured spherical equivalent power and corneal radius with KR-8800, and axial length and anterior chamber depth with IOL Master, and the difference of measuring values between the right eye and left eye was applied as the absolute values in 100 adults aged 20~59 years. In all participants, the most common results showed that spherical equivalent power was $-1.83{\pm}2.17D$, axial length was 23.00~24.99mm, corneal radius was 7.50~7.89mm, and anterior chamber depth was 3.60~4.09mm. There are significant correlations between both eyes in axial length and anterior chamber depth with the difference of both spherical equivalent power. The difference of both axial lengths was the biggest with the difference of both refractive errors, and shown the highest correlation. The convergence complex study through classification by aspects is needed since the difference of both refractive errors is closely related with ocular components variation, and poor visual function would be caused by the difference of both refractive errors.

Reliability of Autorefractometry after Corneal Refractive Surgery (레이저 굴절교정수술 후 자동굴절검사법의 신뢰성)

  • Lee, Ki-Seok
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.443-451
    • /
    • 2018
  • Purpose : To find out the reliability of autorefractometer after laser refractive surgery Methods : We measured and compared spherical and cylinder powers of those undergone LASEK surgery with 1.0 of naked vision after at least 3 months of the surgery with an autorefractometer(CANON Full Auto Ref-Keratometer RK-F1, Japan) and a retinoscope(Streak Retinoscope 18200, WelchAllyn, USA), and also applied spherical equivalent powers. The refractive status before surgery was divided into high, medium, and low myopia according to the results measured using an autorefractometer, and then analyzed again the reliability of the autorefractometer after surgery according to the preoperative refractive status. The agreement of two methods was identified using Bland-Altman(Bland-Altman limits of agreement(LoA)). Results : After the surgery, when comparing spherical, cylinder and equivalent powers in the whole data measured by autorefractometry and retinoscopy significant differences were found(p<0.01). According to the degree of refractive errors, all sort of refractive errors was shown significantly different(p<0.01) except for cylinder power of the medium myopia. In general, the refractive errors especially spherical and spherical equivalent powers by autorefractometry were shown a myopic trend from -0.38 D to -0.53 D. On the other hand, it was shown a hyperopic trend of approximately +0.30 D using retinoscopy. In comparison of two objective refractions, it was shown a myopic trend as $-0.51{\pm}0.45D$(LoA +0.36 D ~ -1.39 D) and compatible. Conclusion : Even though it would be positive in terms of compatibility of the methods, it is necessary that the glasses should be prescribed by subjective refraction since autorefractometry is shown myopic in those undergone the surgery and suffering from myopic regression.

The Evaluation of Reliability for the Combined Refractive Power of Overlapping Trial Lenses (중첩된 시험렌즈의 합성굴절력에 대한 신뢰도 평가)

  • Lee, Hyung Kyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.263-276
    • /
    • 2015
  • Purpose: The current study aimed to evaluate the reliability for the combined refractive power when a spherical lens and a cylindrical lens were overlapped in a trial frame. Methods: The refractive powers, central thickness and peripheral thickness of spherical trial lenses and cylindrical lenses with negative power were measured. The combined refractive power of the spherical and cylindrical lenses was measured by auto lens meter. Measurement was repeated by changing the insertion order, and their results were further compared with the calculated combined refractive power. Results: There was no correlation between the variation of central and peripheral thickness in trial lenses and that of the lens power. Among 79 trial lenses, 3 trial lenses wasn't met the international standard. The refractive power calculated by Gullstrand's formula that could compensate vertex distance had smaller difference with the estimated power when compared with that calculated by thin lens formula however, it was significantly different from the estimated power. The refractive powers were generally apparent regardless of the insertion order of a spherical lens and a cylindrical lens: thin lens formula > actual measurements > Gullstrand's formula. The error was only found in cylindrical power calculated by Gullstrand's formula when inserted a spherical lens inside and a cylindrical lens outside however, the error was found in both of cylindrical and spherical powers calculated by Gullstrand's formula when inserted as a opposite order. By comparing actual measurements of equivalent spherical power, the accuracy was higher and the possibility of over-correction was lower when inserted a spherical lens inside and a cylindrical lens outside. Conclusions: From the results, those were revealed that the combined refractive power is influenced by the factors other than the vertex distance and the refractive power varies in accordance with the insertion order of a spherical lens and a cylindrical lens. Thus, it can be suggested that the establishment of standard for these is neccesaty.

Refractive Error Shift in Nuclear, Cortical, and Subcapsular Cataract (핵, 피질 그리고 낭 백내장의 굴절이상 전환)

  • Park, Sang-Chul;Lee, Soek-Ju;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.1
    • /
    • pp.41-45
    • /
    • 2003
  • The researchers have studied on the effect of three main morphological types(nuclear, cortical, and subcapsular cataract) of age related cataract on refractive error. We also identified that spherical and cylinderical shift in each type of morphological cataract accoding to their locations and effect of intraocular pressure before and after cataract surgery. Nuclear cataract showed myopic shift while cortical cataract showed hyperopic shift, and subcapsular cataract showed not significant changes on both direction. Age related cataract subjects(120 eyes) only were recruited from sun-cheon area. We use optic section of slit lamp biomicroscope to identify the anatomical location of cataract, and optimal refractive correction determined by objective(retinoscope) and subjective refraction then spherical changes were calculated from the spherical eqivalent value. Intra-ocular pressure were measured by auto-tonometer before and 7 days after cataract has been replaced by IOL. The change in cylindrical power, usually A-P diameter decreased according to increases of age, A-P diameter increased because intra-ocular pressure rises by progression of cataract and this convertion with the rule astigmatism to against the rule astigmatism and this increases more by intra-ocular pressure.

  • PDF

Comparison of Autorefraction and Refraction with iTrace for Elementary School Children (초등학생의 자동안굴절계와 iTrace로 측정한 굴절검사 값의 비교)

  • Kim, Hyojin;Lee, Koon-Ja;Kim, Sam-Yi;Kim, Se-Rom
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.1
    • /
    • pp.99-104
    • /
    • 2010
  • Purpose: Difference of refraction result from the method of autorefraction and iTrace were investigaged for the children of elementary school in Asan City. In iTrace method. exclusion of accommodation without cycloplegia was used. Methods: Manifest refractive stale of 42 eyes of 12~13 years old were measured using autorefractor and iTrace. Refractions of far (more than 5 m) and ncar (30 cm) vision were measured using iTrace. All data showed that the spherical equivalent were classified as being in the group 1 (-0.50D < ~ < +1.00D) and 2 (below -0.50D) according 10 refractive errors. Results: Mean spherical equivalent using autorefractor and iTrace (far and near vision) were -1.08D, -0.29D and -2.34D, respectively (p<0.01). Compared with the far vision using iTrace, autorefraction was measured the myopia with -0.50D ~ -1.00D in 52.4% of total eyes. Autorefraction also statistical significant were measured a more myopia than the far vision using iTrace in group I and 2. Conclusions: The difference of refractive errors between autorefraction and iTrace, objective refraction were measured with far vision of more than 5 m were -0.79D. Autoreftaction showed statistically decreased refraction errors than iTrace with far vision.

A study of refraction state of middle aged & manhood in Daegu (대구지역 중·장년층의 굴절상태 연구)

  • Choi, Gei-Hun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.323-332
    • /
    • 2004
  • This study researched the visual acuity test object and Auto-refractormeter, visual of near power. The object were composed of middle aged, the old men and women who in habit Daegu. The results were as follows : 1. The subjects consisted of 537 people, 29.98% men, 70.02% women. 2. The emmetropia was 1.12% for myopia, 2.79% for hyperopia, 96.09% for astigmatism. 3. The abnormal refraction was composition for myopic compound astigmatism(16.57%), hyperopia compound astigmatism(45.62%), Mixed astigmatism(33.89%). 4. On the Myopic Spherical Equivalent(S.E) power, the range of -0.50D ${\leq}$ M.S.E < -1.00D was 21.67%, -1.00D ${\leq}$ M.S.E < -2.00D was 48.89%, -2.00D ${\leq}$ M.S.E < -6.00D was 29.44%. 5. On the Hyperopic Spherical Equivalent(S.E) power, the range of +0.50D ${\leq}$ H.S.E < +1.00D was 28.57%, +1.00D ${\leq}$ H.S.E < +2.00D was 49.30%, +2.00D ${\leq}$ H.S.E < +6.00D was 23.13%. 6. The addition power was 1.00D(8.01%), 1.50D(8.57%), 2.00D(13.78%), 2.50D(16.57%), 3.00D(16.95%), 3.50D(17.88%), 4.00D(18.25%).

  • PDF