• Title/Summary/Keyword: 드릴링

Search Result 182, Processing Time 0.026 seconds

미소경 드릴링 머신의 시작과 절삭현상의 연구

  • 백인환;정우섭;이상호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.66-70
    • /
    • 1993
  • 미세드릴가공은 드릴 직경의 소경화로 발생하는 공구강성저하, 지동 발생, 칩배출 곤란 등으로 인해 수많은 기계가공 중에서도 가장 어려운 가공 중의 하나이며 이로인해 설계의 단계에서 가능한 피하고있는 실정이다. 그러나 근래 각종 제품의 소형 경량화 추세가 일어나면서 미세구멍가공 기술에 대한 중요성이 높아지고 있으며, 특히 시계부품, 소형 정밀 부품, 연료분사용 노즐, 광파이버 관련품, 우주항공기 부품 등에 수요가 급증하고 있다. 또한 최근 전기.전자 공업의 발달과 함께 등장한 표면실장기술(SMT)은 프린터 배선기판의 고밀도화를 더욱 진전시켰으며 이는 구멍밀도, 구멍지름의 미소화 등 미세구멍가공 관점에서 보완해야 할 기술적인 과제를 남겨 놓았다. 본 연구는 미세드릴가공의 메카니즘을 규명하고 그 문제점을 해결하여 미소경 드릴링 머신을 개발하는 데 주력함과 동시에그 절삭현상의 기초적인 연구를 수행하였다

Temperature change and performance of bur efficiency for two different drill combinations (두 가지 임플란트 드릴 조합에 따른 온도 변화 및 효율 비교)

  • Hwang-Bo, Heung;Park, Jae-Young;Lee, Sang-Youn;Son, Keunbada;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.2
    • /
    • pp.143-151
    • /
    • 2022
  • Purpose. The purpose of this study was to evaluate the performance efficiency of two different drill combinations according to the heat generated and drilling time. Materials and methods. In this study, cow ribs were used as research materials. To test the specimen, cow bones were rid of fascia and muscles, and a temperature sensor was mounted around the drilling area. The experimental group was divided into a group using a guide drill and a group using a Lindmann drill according to the drill used before the initial drilling. The drilling sequence of the guide drilling group is as follows; guide drill (ø 2.25), initial drill (ø 2.25), twist drill (ø 2.80), and twist drill (ø 3.20). The drilling sequence of the Lindmann drilling group is as follows; Lindmann drill (ø 2.10), initial drill (ø 2.25), twist drill (ø 2.80), and twist drill (ø 3.20). The temperature was measured after drilling. For statistical analysis, the difference between the groups was analyzed using the Mann-Whitney U test and the Friedman test was used (α = .05). Results. The average performance efficiency for each specimen of guide drilling group ranged from 0.3861 to 1.1385 mm3/s and that of Lindmann drilling group ranged from 0.1700 to 0.4199 mm3/s. The two drill combinations contained a guide drill and Lindmann drill as their first drills. The combination using the guide drill demonstrated excellent performance efficiency when calculated using the drilling time (P < .001). Conclusion. Since the guide drill group showed better performance efficiency than the Lindmann drill group, the use of the guide drill was more suitable for the primary drilling process.

Acoustic Emission Monitoring of Drilling Burr Formation Using Wavelet Transform and an Artificial Neural Network (웨이브렛 변환과 신경망 알고리즘을 이용한 드릴링 버 생성 음향방출 모니터링)

  • Lee Seoung Hwan;Kim Tae Eun;Raa Kwang Youel
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.37-43
    • /
    • 2005
  • Real time monitoring of exit burr formation is critical in manufacturing automation. In this paper, acoustic emission (AE) was used to detect the burr formation during drilling. By using wavelet transform (WT), AE data were compressed without unnecessary details. Then the transformed data were used as selected features (inputs) of a back-propagation artificial neural net (ANN). In order to validate the in process AE monitoring system, both WT-based ANN and cutting condition (cutting speed, feed, drill diameter, etc.) based ANN outputs were compared with experimental data.

Experimental Study of Machining Process of Polymer Mold for Fabrication of Three-Dimensional Hydrogel Scaffold (3 차원 하이드로젤 지지체 제작을 위한 고분자 몰드의 가공 특성에 대한 실험적 연구)

  • Lee, Pil-Ho;Lee, Sang Won;Kim, Daehoon;Kim, Si Hyeon;Sung, Jong Hwan;Chung, Haseung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.669-674
    • /
    • 2013
  • A three-dimensional hydrogel scaffold has been proposed for the effective production of biomimetic intestinal villi to reduce ethical and cost problems caused by animal testing in pharmaceutical development. This study explores an experimental approach to develop a new technique based on laser machining and microdrilling processes to produce a plastic mold for the fabrication of a three-dimensional hydrogel scaffold. For process optimization, both the laser machining and the microdrilling experiments are conducted by varying the experimental conditions, and structural characterization of the mold and intestinal villi were performed using SEM (scanning electron microscope) and OM (optical microscope) images. Polycarbonate (PC) was used as a candidate material. The experimental results show that intestinal villi can be fabricated by both laser and microdrilling machining processes.

Analysis of multi-facet drill(MFD) performance and optimization of MFD geometry (다면 드릴의 성능 해석과 최적화)

  • 이상조;윤영식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1523-1532
    • /
    • 1990
  • The objective of this study is to develope an optimized multi-facet drill (MFD). The principal factors that affect drilling performance are its geometry and the cutting conditions. In particular, the helix angle in the total twist angle of the twist drill, affects much morgen influence on the dynamic and static stiffness and on determining the characteristics of the chip disposal capacity of the drill. In this study, considering the helix angle as a major parameter, the model was developed. From this model, the deformation of transverse direction was simulated with the bending forces applied. The performance of a drill largely depends upon drilling forces. Comprehensive models for predicating the drilling thrust and torque are developed for the different drill geometries. The effects of MFD geometric parameters on thrust and torque are also deduced from the prediction models, from which an optimal drill geometry is found with the emphasis on minimum drilling forces.

Experimental study on micro-hole drilling of anodized aluminum using picosecond laser (피코초 레이저를 이용한 양극산화 알루미늄 미세 홀 가공의 실험적 연구)

  • Oh, B.K.;Bang, J.H.;Kim, J.K.;Lim, S.M.;Lee, S.K.;Jeong, S.H.;Hong, S.K.
    • Laser Solutions
    • /
    • v.17 no.2
    • /
    • pp.5-10
    • /
    • 2014
  • Aluminum has been widely used in the electric applications because of light metals. When mechanical element is periodically moving with contacting other surfaces, the anodizing process for aluminum is useful for avoiding the abrasive damage. The anodized element has quietly different characteristics with respect to the distribution of hardness and crystal structure. In this work, the laser drilling of anodized surface is studied experimentally. Fusion drilling method - laser drilling with inert gas blowing - is used. The effect of various process parameters (gas pressure, laser power, focus position) is investigated with respect to the hole size and circularity.

  • PDF

Drill Shape and Cutting Conditions for Environmentally Conscious Drilling (환경친화적 건식 드릴링을 위한 드릴형상 및 절삭조건)

  • 고태조
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.36-44
    • /
    • 2000
  • In this paper drill shape and cutting conditions for environmentally conscious dry drilling of A319 Al-alloy are studied by experimental method. The experiment is planned with Taguchi's method that is based on the orthogonal array of design factors. The result is summarized as follows (1) Drill geometry optimization can increase the number of holes in dry drilling and also large helix angle and large point angle are desirable in dry drilling. (2) It is found that cutting conditions that is cutting speed and feed rate are closely related to the drill geometry(3) For dry drilling of Al-alloys drill shape and cutting conditions are selected and tested by experimental method. But it is found that the perfect dry drilling is difficult because of the machining characteristics of Al-alloys and so new machining method such as minimal lubricant application is required.

  • PDF

Development of Micro-hole Drilling Machine and Assessment of cutting Performance (마이크로흘 드릴링 머신의 개발 및 절삭성능 평가)

  • 김민건;유병호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.39-44
    • /
    • 2001
  • In this paper, drill fred mechanism, cutting depth measuring device and sensing buzzer of drill contact were investigated in order to develop the micro-hole drilling machine. Also, measuring device of cutting resistance was developed in order to estimate cutting resistance from change of cutting condition. The results show that extremely-low fled rate(less then $17{\mu}m/S$${\mu}{\textrm}{m}$ /s) can be done and cutting depth can be measured by up to 1${\mu}{\textrm}{m}$ with developed drilling machine. Accordingly we could assemble a very cheap micro-hole drilling machine($\phi$ 0.05~0.5 mm). Also we got the some properties of cutting performance i.e. under the same condition, cutting torque decreases as increase of spindle speed and rapid fled of drill brings about the inferior cutting state under low spindle speed.

  • PDF