• 제목/요약/키워드: 드릴링

검색결과 182건 처리시간 0.028초

Copper 박막의 레이저 미세홀 가공이 버 생성에 관한 연구 (A study on burr generation of laser micro-hole drilling for copper foil)

  • 오재용;신보성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.873-877
    • /
    • 2005
  • The burr of micro drilling and micro cutting on thin metal film is a major obstacle to mass production for micro PCB boards in micro technologies of personal computing and telecom explosion. As the burr affects on the assembling process, it is necessary to study continuously on control or elimination of the burr. In order to get higher valued products, it is also needed to competitive techniques with the high resolution. In this paper, we studied experimentally the burr generation that when it is processed on the copper foil by laser in micro-hole machining. Unlike mechanical machining the burr produced on substrate is a resultants of melt and re-solidification of a melten metal which was heated and treated by laser. And higher laser energy increases the size of burr. Therefor in micro-drilling with laser, it is difficult to reduce the effects of burr for very thin metal sheets. We investigated the stale of the burr and analyzed the laser ablation Cu micro machining with respect to laser intensity and processing time.

  • PDF

피코초 레이저 및 CDE를 이용한 TSV가공기술 (TSV Formation using Pico-second Laser and CDE)

  • 신동식;서정;조용권;이내응
    • 한국레이저가공학회지
    • /
    • 제14권4호
    • /
    • pp.14-20
    • /
    • 2011
  • The advantage of using lasers for through silicon via (TSV) drilling is that they allow higher flexibility during manufacturing because vacuums, lithography, and masks are not required; furthermore, the lasers can be applied to metal and dielectric layers other than silicon. However, conventional nanosecond lasers have disadvantages including that they can cause heat affection around the target area. In contrast, the use of a picosecond laser enables the precise generation of TSVs with a smaller heat affected zone. In this study, a comparison of the thermal and crystallographic defect around laser-drilled holes when using a picosecond laser beam with varing a fluence and repetition rate was conducted. Notably, the higher fluence and repetition rate picosecond laser process increased the experimentally recast layer, surface debris, and dislocation around the hole better than the high fluence and repetition rate. These findings suggest that even the picosecond laser has a heat accumulation effect under high fluence and short pulse interval conditions. To eliminate these defects under the high speed process, the CDE (chemical downstream etching) process was employed and it can prove the possibility to applicate to the TSV industry.

  • PDF

유리탄소섬유 하이브리드 복합재의 절삭 조건에 따른 가공 결함 비교 (Comparison of Machining Defects by Cutting Condition in Hybird FRP Drilling)

  • 백종현;김수진
    • 한국기계가공학회지
    • /
    • 제21권9호
    • /
    • pp.12-20
    • /
    • 2022
  • Delamination and burr defects are important problems in drilling fiber reinforced plastics. A method for measuring FRP drilling defects has been studied. Delamination and burr factors were defined as the relative length or area. Using these factors, the effects of tool shape and drilling conditions on delamination and burr were studied. In this study, the defects that occur when drilling a glass-carbon fiber hybrid composite were compared in terms of three factors. In the glass-carbon fiber hybrid composite, the effects of the feed rate and tool point angle on the delamination and burr factors were similar to those in previous studies. The diameter of the tool did not affect the defect factor. A circular burr was generated in a drill tool with a point angle of 184°, and a relatively small deburring factor was observed compared with a tool with a point angle of 140°.

탄소섬유강화플라스틱(CFRP)의 적층 배향각에 따른 드릴링 가공 특성 고찰 (Investigation Into the Drilling Characteristics of Carbon Fiber Reinforced Plastic (CFRP) with Variation of the Stacking Sequence Angle)

  • 김태영;김호석;신형곤
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.250-258
    • /
    • 2014
  • Due to recent industrial growth and development, there has been a high demand for light and highly durable materials. Therefore, a variety of new materials has been developed. These new materials include carbon fiber reinforced plastic (CFRP or CRP), which is a wear-, fatigue-, heat-, and corrosion-resistant material. Because of its advantageous properties, CFRP is widely used in diverse fields including sporting goods, electronic parts, and medical supplies, as well as aerospace, automobile, and ship materials. However, this new material has several problems, such as delamination around the inlet and outlet holes at drilling, fiber separation, and tearing on the drilled surface. Moreover, drill chips having a fine particulate shape are harmful to the work environment and engineers' health. In fact, they deeply penetrate into machine tools, causing the reduction of lifespan and performance degradation. In this study, CFRP woven and unidirectional prepregs were formed at $45^{\circ}$ and $90^{\circ}$, respectively, in terms of orientation angle. Using a high-speed steel drill and a TiAIN-coated drill, the two materials were tested in three categories: cutting force with respect to RPM and feed speed; shape changes around the input and outlet holes; and the shape of drill chips.

고출력 전자빔 드릴링 가공 파라미터 선정에 따른 증기화 증폭 시트의 가공 실험 및 특성 분석 (Machining experimental and characteristic analysis of vaporized amplification sheets according to selection of high-power density electron beam drilling parameters)

  • 김현정;정성택;위은찬;이주형;강준구;김진석;강은구;백승엽
    • Design & Manufacturing
    • /
    • 제14권2호
    • /
    • pp.62-68
    • /
    • 2020
  • Recently, research on precise parts required in aerospace, ship, and automobile industries has been actively conducted. In this paper, electron beam drilling machining parameters were selected and experiments were conducted to compare processing characteristics analysis according to machining parameters through machining experiments of a vaporization amplification sheet to which STS 304 was applied. Also, as a result of measuring the machining. As the thickness gradually increased, it was confirmed that the electron beam could not reach the vaporization amplification sheet and thus melted on the surface of the material. As a result of the experimental analysis, it was analyzed that the vaporization explosion reaction of the vaporization amplification sheet was not normally performed due to the working distance (WD) according to the material thickness.

PVC 재료의 드릴링 특성 (Drilling Characteristics of PVC Materials)

  • 변재영;박나람;정성원;권순홍;권순구;박종민;김종순;최원식
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.70-77
    • /
    • 2015
  • This paper develops and evaluates a mechanical machining process which involves drilling on PVS material. According to the material, two treatment experiments were conducted, one involving drilling in a wet condition or using a lubricant and one involving drilling in a dry condition with no lubricant. Drilling in a dry condition showed better performance in terms of the cutting time than in the wet condition. Otherwise, the wet condition has several advantages. The lubricant influenced the burr diameter size and minimized the temperature on the surface of the work piece. During the wet condition drilling process, a smaller burr diameter size was noted as compared to the dry condition. The temperature showed a linear correlation with the drill bit size, where a least-square analysis provided an $R^2$valuewhichexceeded 0.95. The wet condition required more cutting time than the dry condition. In this condition, the water provides a lubrication effect. A thin layer between the cutting edges and the surface of the work piece is formed. The chip formation is affected by the drilling depth. The color on the tips of the chips was darker than in the initial condition. No correlation between the drilling depth and the bore roughness was noted, but the variation of the cutting speed or the RPM influenced the roughness of the bore. The optimum cutting speed ranged from 40 RPM to 45 RPM in the condition which provided the finest roughness surface.

고온선박엔진용 MoSi$_2$금속간화합물의 경도와 방전가공특성 (Hardness and EDM Processing of MoSi$_2$Intermetallics for High Temperature Ship Engine)

  • 윤한기;이상필
    • 한국해양공학회지
    • /
    • 제16권6호
    • /
    • pp.60-64
    • /
    • 2002
  • This paper describes the machining characteristics of the MoSi$_2$--based composites through the process of electric discharge drilling with various tubular electrodes. In addition to hardness characteristics, microstructures of Nb/MoSi$_2$laminate composites were evaluated from the variation of fabricating conditions, such as preparation temperature, applied pressure, and pressure holding time. MoSi$_2$-based composites have been developed in new materials for jet engines of supersonic-speed airplanes and gas turbines for high-temperature generators. These high performance engines may require new hard materials with high strength and high temperature-resistance. Also, with the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material. The tool electrode is almost -unloaded, because there is n direct contact between the tool electrode and the work piece. By combining a non-conducting ceramic with more conducting ceramic, it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and MoSi$_2$ powder was an excellent strategy to improve hardness characteristics of monolithic MoSi$_2$. However, interfacial reaction products, like (Nb, Mo)SiO$_2$and Nb$_2$Si$_3$formed at the interface of Nb/MoSi$_2$, and increased with fabricating temperature. MoSi$_2$composites, with which a hole drilling was not possible through the conventional machining process, enhanced the capacity of ED-drilling by adding MbSi$_2$, relative to that of SiC or ZrO$_2$reinforcements.

핵연료계장을 위한 정밀 드릴링장치 개발 (Development of Precision Drilling Machine for the Instrumentation of Nuclear Fuels)

  • 홍진태;정황영;안성호;정창용
    • 한국정밀공학회지
    • /
    • 제30권2호
    • /
    • pp.223-230
    • /
    • 2013
  • When a new nuclear fuel is developed, an irradiation test needs to be carried out in the research reactor to analyze the performance of the new nuclear fuel. In order to check the performance of a nuclear fuel during the irradiation test in the test loop of a research reactor, sensors need to be attached in and out of the fuel rod and connect them with instrumentation cables to the measuring device located outside of the reactor pool. In particular, to check the temporary temperature change at the center of a nuclear fuel during the irradiation test, a thermocouple should be instrumented at the center of the fuel rod. Therefore, a hole needs to be made at the center of fuel pellet to put in the thermocouple. However, because the hardness and the density of a sintered $UO_2$ pellet are very high, it is difficult to make a small fine hole on a sintered $UO_2$ pellet using a simple drilling machine even though we use a diamond drill bit made by electro deposition. In this study, an automated drilling machine using a CVD diamond drill has been developed to make a fine hole in a fuel pellet without changing tools or breakage of workpiece. A sintered alumina ($Al_2O_3$) block which has a higher hardness than a sintered $UO_2$ pellet is used as a test specimen. Then, it is verified that a precise hole can be drilled off without breakage of the drill bit in a short time.

연구로 2호기 동위원소생산시설 해체활동 평가 (Evaluation on the Dismantling Activities of the KRR-2 Radioisotope Production Facilities)

  • 박승국;천은영;박진호
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.671-675
    • /
    • 2003
  • 연구로 1,2호기 해체 사업이 본격적으로 착수하게 됨에 따라 2001년 8월부터 2002년 12월까지 연구로 2호기 부속시설인 동위원소 생산시설을 제염 및 해체하였다. 이 시설은 동위원소 생산용 콘크리트 핫셀, 납 핫셀 및 실험실로 구성되어 있다. 제염ㆍ해체의 대상물은 흄후드, 실험대, 씽크 및 오염된 내부 시설물이다. 안전한 해체 활동을 위해서 각종 지침서 및 절차서가 수립되었다. 해체 활동을 위해 총 20,933 man-hour의 인력이 소요되었고, 드릴링 머신 등 여러 장비가 투입되었다. 실험실에서의 최대 오염도는 유리성 오염도가 $\beta$ : 9.24 Bq/$\textrm{cm}^2$이였고, 고착성 오염도는 350,000 cpm이였다. 해체폐기물은 콘크리트류, 목재류 및 철재류 등으로 총 62.146 Ton이고, 작업자들의 피폭량은 0.33 mam-mSv로 나타났다.

  • PDF

AMOLED 제조공정에 사용되는 Fine Metal Mask 용 얇은 Invar 합금의 진동자를 이용한 펨토초 레이저 응용 홀 드릴링 (Application of femtosecond laser hole drilling with vibration for thin Invar alloy using fine metal mask in AMOLED manufacturing process)

  • 최원석;김훈영;신영관;최준하;장원석;김재구;조성학;최두선
    • Design & Manufacturing
    • /
    • 제14권3호
    • /
    • pp.44-49
    • /
    • 2020
  • One of display trends today is development of high pixel density. To get high PPI, a small size of pixel must be developed. RGB pixel is arranged by evaporation process which determines pixel size. Normally, a fine metal mask (FMM; Invar alloy) has been used for evaporation process and it has advantages such as good strength, and low thermal expansion coefficient at low temperature. A FMM has been manufactured by chemical etching which has limitation to controlling the pattern shape and size. One of alternative method for patterning FMM is laser micromachining. Femtosecond laser is normally considered to improve those disadvantages for laser micromachining process due to such short pulse duration. In this paper, a femtosecond laser drilling for thickness of 16 ㎛ FMM is examined. Additionally, we introduce experimental results for controlling taper angle of hole by vibration module adapted in laser system. We used Ti:Sapphire based femtosecond laser with attenuating optics, co-axial illumination, vision system, 3-axis linear stage and vibration module. By controlling vibration amplitude, entrance and exit diameters are controllable. Using vibrating objective lens, we can control taper angle when femtosecond laser hole drilling by moving focusing point. The larger amplitude of vibration we control, the smaller taper angle will be carried out.