• Title/Summary/Keyword: 두께 변형률

Search Result 465, Processing Time 0.025 seconds

Computational analysis of sandwich shield with free boundary inserted fabric at hypervelocity impact (비구속 삽입된 직물 섬유를 이용한 샌드위치 쉴드의 초고속 충격 해석)

  • Moon, Jin-Bum;Park, Yu-Rim;Son, Gil-Sang;Kim, Chun-Gon
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.31-38
    • /
    • 2011
  • In this paper, a novel hybrid composite shield to protect space structures from hypervelocity impact of micrometeoroid and space debris is proposed. The finite element model of the proposed shield was constructed and finite element analysis was conducted to approximate the energy absorption rate. Before the final model analysis, analysis of each component including the aluminum plate, PMMA plate, and intermediate layer of fabric was performed, verifying the finite element model of each component. The material properties used in the analyses were predicted material property values for high strain rates. The analysis results showed that, other than the fabric, the energy absorption rate of each component was in agreement. Afterwards, the finite element model of the hybrid composite shield was constructed, where it was analyzed for the restrained and unrestrained fabric boundary condition cases. Through the finite element analysis, the fiber pullout mechanism was realized for the hybrid shield with free boundary inserted fabric, and it was observed that this mechanism led to energy absorption increase.

Application of Digital Image Correlation Method for Measurement of Rock Pillar Displacement and Vibration Due to Underground Mine Blasting (지하 광산발파에 따른 암반광주의 변위 및 진동 측정을 위한 이미지 영상 상관법 적용연구)

  • Ko, Young-Hun;Seo, Seung-Hwan;Lim, Hyun-Sung;Jin, Tai-Lie;Chung, Moon-Kyung
    • Explosives and Blasting
    • /
    • v.37 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • In this study the applicability of a Digital Image Correlation (DIC) method was investigated by measuring the displacement and vibration of rock pillar due to underground mining blasting. When combined with a high speed photography technology, the DIC method provides an excellent photographic image processing ability that can be used to convert the evolving full-field surface properties of structures to 2D or 3D set of coordinate values. The measured coordinate sets are then used to calculate the displacement, strain, and velocity of the target structure. This technique is widely used in science and engineering, and continuously finds its new application areas. In this study, the DIC system and the conventional seismograph were compared for their ability to measure the displacement and vibration produced by blasting. In the field test both methods showed similar results. Thus, it is concluded that the DIC method is feasible to measure the ground displacements and vibrations from blasting.

Application of Modified Ramberg-Osgood Model for Master Curve of Asphalt Concrete (아스팔트 콘크리트 메스터 극선에 대한 수정 Ramberg-Osgood 모델 적용)

  • Kweon, Gi-Chul
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.31-40
    • /
    • 2008
  • The dynamic moduli of asphalt concrete are very important for the analysis and the design of asphalt pavement systems. The dynamic modulus master curve is usually represented by a sigmoidal function. The Ramberg-Osgood model was widely used for fitting of normalized modulus reduction curves with strain of soils in soil dynamic fields. The master curves were obtained by both sigmoidal functions and modified Ramberg-Osgood model for the same dynamic modulus data set, the fitting abilities of both methods were excellent. The coefficients in sigmoidal function are coupled. Therefore, it is not possible to separate the characteristics of the master curve with absolute value and shape. However, the each fitting coefficient in the Ramberg-Osgood model has a unique effect on the master curve, and the coefficients are not coupled with each other.

  • PDF

An Experimental Study on Shear Strengthening Effect of I-girder using Externally Bonded CFRP Strips (외부 부착 탄소섬유를 사용한 I형 보의 전단 보강 효과 연구)

  • Kim, Changhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.108-113
    • /
    • 2018
  • Researches on strengthening and rehabilitation methods are being widely conducted due to the deterioration of existing concrete structures. Use of externally bonded Carbon Fiber Reinforced Polymers (CFRP) strips for the rehabilitation is a cost-effective and time-saving method. Generally, the CFRP layout for the shear strengthening was a uni-directional layout. Many researches have focused on the variables of the uni-directional CFRP layout such as the amount of material, angle, and spacing. Pilot tests indicated that the effective confinement of the concrete member can be provided with the bi-directional CFRP layout than the uni-directional layout. Therefore, the test was carried out after the uni- and bi-directional strengthening work using the same amount of CFRP material. CFRP anchors were installed to prevent unexpected premature CFRP delamination failure before reaching CFRP fracture strain. The effectiveness of the CFRP anchor and bi-directional CFRP layout for shear strengthening was verified based on the principal tensile strain contours.

Free Vibration Analysis of Thick Circular Ring from Three-Dimensional Analysis (두꺼운 원형링의 3차원적 자유진동해석)

  • 양근혁;강재훈;채영호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.609-617
    • /
    • 2002
  • A three-dimensional(3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, circular rings with isosceles trapezoidal and triangular cross-sections. Displacement components u/sub s/, u/sub z/, and u/sub θin the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the ψ and z directions. Potential(strain) and kinetic energies of the circular ring are formulated, and upper bound values of the frequencies we obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for the circular rings with isosceles trapezoidal and equilateral triangular cross-sections having completely free boundaries. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the rings. The method is applicable to thin rings, as well as thick and very thick ones.

Measurement of Material Properties of Composites under High Temperature using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 고온용 복합재료의 물성 측정)

  • 강동훈;박상욱;김수현;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.41-47
    • /
    • 2003
  • Composites are widely used for aircraft, satellite and other structures due to its good mechanical and thermal characteristics such as low coefficient of thermal expansion(CTE), heat-resistance, high specific stiffness and specific strength. In order to use composites under condition of high temperature, however, material properties of composites at high temperatures must be measured and verified. In this paper, material properties of T700/Epoxy were measured through tension tests of composite specimens with an embedded FBG sensor in the thermal chamber at the temperatures of RT, $100^{\circ}$, $200^{\circ}$, $300^{\circ}$, $300^{\circ}$. Through the pre-test of an embedded optical fiber, we confirmed the embedding effects of an optical fiber on material properties of the composites. Two kinds of specimens of which stacking sequences are [0/{0}/0]$_{T}$. and [$90_2$/{0}/$90_2$]. were fabricated. From the experimental results, material property changes of composites were successfully shown according to temperatures and we confirmed that fiber Bragg grating sensor is very appropriate to strain measurement of composites under high temperature.

Evaluation of the Shear Strength of Reinforced Concrete Beams Strengthened with Continuous fiber Reinforced Polymer (연속섬유에 의하여 보강된 철근콘크리트 보의 전단강도 평가)

  • Lee Jung-Yoon;Hyang Hyun-Bok;Kim Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.983-992
    • /
    • 2005
  • The shear failure modes of fiber reinforced polymer(FRP) strengthened concrete beams are quite different to those of the beams strengthened with steel stirrups. When the beams are strengthened with larger amount of FRP composites, the beams normally fail in shear due to concrete crushing before the FRP reaches its rupture strain. In order to predict the shear strength of such beams, the actual rupture strain must be known. The equations previously reported in the technical literature adopt an effective reduction factor for the rupture strain. These equations may not be applicable to FRP strengthened RC beams that are beyond the experimental application limits, because most of these equations are empirical in nature. This paper presents the results of an analytical study on the performance of reinforced concrete beams externally wrapped with FRP composites and internally reinforced with conventional steel stirrups.

Comparative analysis of strain according to two wavelengths of light source and constant temperature bath deposition in ultraviolet-curing resin for dental three-dimensional printing (치과 3D 프린팅용 자외선 경화 레진에 광원의 두 가지 파장에 따른 경화 및 항온수조 침적에 따른 변형률의 비교 분석)

  • Kim, Dong-Yeon;Lee, Gwang-Young;Kang, Hoo-Won;Yang, Cheon-Seung
    • Journal of Technologic Dentistry
    • /
    • v.42 no.3
    • /
    • pp.208-212
    • /
    • 2020
  • Purpose: This study aimed to analyze the shrinkage and expansion strain of ultraviolet (UV)-cured resin according to the wavelength of the light source and compare the shrinkage and expansion. Methods: We prepared the mold with according to the ISO 4049 specimen. The size of the circle in the mold was prepared with a height of 6.02 mm and a diameter of 4 mm. UV-curable resin for three-dimensional (3D) printing was injected into the circular mold. The control group was irradiated with a wavelength of 400~405 nm using UV-curing equipment (400 group), and the experimental group was irradiated with a wavelength of 460~465 nm (460 group). Both groups were produced ten specimens. The produced specimen was first measured with a digital micrometer. After the first measurement, the specimen was immersed in a constant temperature water bath for 15 days, after which the second measurement was performed, and the third measurement was taken after 30 days. The measured values were analyzed using the independent sample t-test (α=0.05). Results: In the non-immersion water tank, the contraction was 0.9% in the 400 group and 1.3% in the 460 group. In the constant temperature bath, the expansion was high at -0.4% in the 400 group for 15 days, and the smallest expansion was -0.03% for the 400 group for 30 days. There were significant differences between the two groups (p<0.05). Conclusion: The 400 group had a lower UV resin specimen strain than the 460 group. Therefore, it is recommended to use the wavelength required by the UV-curing resin.

A Nonlinear Material Model for Concrete Compression Strength considering confining effect (콘크리트 압축강도에 따른 횡철근 구속효과를 고려한 비선형 재료모델)

  • Park, Jae-Guen;Lee, Heon-Min;Sung, Dae-Jung;Choi, Jung-Ho;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.261-264
    • /
    • 2008
  • When the concrete is confined to width direction, stress-strain curve of concrete are different from the uniaxial behavior. In case of normal strength concrete, Mander model are used with concrete material model which considers confining effect. Sakino-Sun model showed experimental result of specimen-level and the highest accuracy. Therefore, Normal strength concrete used Mander model. and High strength concrete used Sakino-Sun model. But there are significant differences from actual data when medium strength concrete used Mander or Sakino-Sun model. and Limit scope of maximum or minimum compressive strength of concrete is not clear when applied to two models. Therefore, In this research, material nonlinear model of confined concrete is suggested when concrete which has 30-40MPa's strength is confined to width direction.

  • PDF

Long -Term Settlement Behavior of Landfills with Consideration of Refuse Decomposition (분해가 고려된 쓰레기 매립지의 장기 침하 거동)

  • Park, Hyeon-Il;Lee, Seung-Rae;Go, Gwang-Hun
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.5-14
    • /
    • 1998
  • In refuse landfill, long-term settlement is considerably dependent upon the biological decomposition of refuse which is distinguished from typical soil behavior. Two equations are combined in order to model long-term settlement behavior of refuse landfill caused by mechanical secondary compression and secondary compression caused by the decomposition of biolegradable refuse. It is suggested that mechanical secondary compression is linear with respcet to the logarithm of time. In order to estimate the settlement that occurs due. to the decomposition of biodegradable refuse, a mathematical model is used which theoretically conoiders the decomposition process related to the solubilization stage of biodegradable refuse solid. This model is based on hydrolysis process and expressed as first order kinetics. The proposed model is applied to Lysimeter compression data of an old refuse. This paper intends to propose the simplest mathematical model which effectively represents settlement caused by the solubilization stage of biodegradable refuse solid on decomposition process.

  • PDF