• 제목/요약/키워드: 두께변형률

Search Result 209, Processing Time 0.028 seconds

Fabrication and Device Characteristics of Infrared Photodetector Based on InAs/GaSb Strained-Layer Superlattice (InAs/GaSb 응력초격자를 이용한 적외선검출소자의 제작 및 특성 연구)

  • Kim, J.O.;Shin, H.W.;Choe, J.W.;Lee, S.J.;Kim, C.S.;Noh, S.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.108-115
    • /
    • 2009
  • The superlattice infrared photodetector (SLIP) with an active layer of 8/8-ML InAs/GaSb type-II strained-layer superlattice (SLS) of 150 periods was grown by MBE technique, and the proto-type discrete device was defined with an aperture of $200-{\mu}m$ diameter. The contrast profile of the transmission electron microscope (TEM) image and the satellite peak in the x-ray diffraction (XRD) rocking curve show that the SLS active layer keeps abrupt interfaces with a uniform thickness and a periodic strain. The wavelength and the bias-voltage dependences of responsivity (R) and detectivity ($D^*$) measured by a blackbody radiation source give that the cutoff wavelength is ${\sim}5{\mu}m$, and the maximum Rand $D^*$ ($\lambda=3.25{\mu}m$) are ${\sim}10^3mA/W$ (-0.6 V/13 K) and ${\sim}10^9cm.Hz^{1/2}/W$ (0 V/13 K), respectively. The activation energy of 275 meV analyzed from the temperature dependent responsivity is in good agreement with the energy difference between two SLS subblevels of conduction and valence bands (HH1-C) involving in the photoresponse process.

Characterization of Transparent TiO2 Power and Thin Films through Sol-Gel Process (졸-겔법을 이용한 투과성 TiO2 분말 및 박막의 특성 연구)

  • Jung, Mie-Won;Lee, Zee-Young;Son, Hyun-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.252-258
    • /
    • 2002
  • Transparent $TiO_2$ thin films prepared by sol-gel process using the modification of titanium(IV) alkoxide showed improved thermal stability and high refraction index. Compared to the pure $TiO_2$ film, the modified $TiO_2$ films show the increased index of refraction under proper condition at pH 2.5. Transparency of these $TiO_2$ thin films were more than 80% in the visible region. It has been demonstrated that the reaction occurs in the amorphous phase: an exchange of phase results in anatase before and after 400$^{\circ}C$, in rutile over 700$^{\circ}$C form the XRD results. The particle sizes, shapes and structures of these nanoclusters in the $TiO_2$ films have been identified through a SEM and XRD. The physical properties and structures of their powders have also been studied through a SEM, XRD, TGA and DSC. The thickness and index of refraction have been determined by the analysis of ellipsometric spectra.

Evaluation of Fracture Toughness of Copper Thin Films by Combining Numerical Analyses and Experimental Tests (해석과 실험을 결합한 구리 박막의 파괴인성 평가)

  • Kim, Hyun-Gyu;Oh, Se-Young;Kim, Kwang-Soo;Lee, Haeng-Soo;Kim, Seong-Woong;Kim, Jae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.233-239
    • /
    • 2013
  • In this paper, a method of combining numerical analyses and experimental tests is used to evaluate fracture toughness of copper thin films of $15{\mu}m$ thickness. Far-field loadings of a global-local finite element model are inversely estimated by matching crack opening profiles in experiments with numerical results. The fracture toughness is then evaluated using the J-integral for cracks in thin films under far-field loadings. In experiments, Cu thin films attached to Aluminum sheets are loaded indirectly, and crack opening profiles are observed by microscope camera. Stress versus strain curves of Cu thin films are obtained through micro-tensile tests, and the grain size of Cu thin films is observed by TEM analysis. The results show that the fracture toughness of Cu thin films with $500nm{\sim}1{\mu}m$ sized grains is $6,962J/m^2$.

Nonlinear Finite Element Analysis of the Reinforced Concrete Panel using High-Strength Reinforcing Bar (고강도 철근을 사용한 철근콘크리트 패널의 비선형 유한요소해석)

  • Cheon, Ju-Hyun;Seong, Dae-Jung;Cho, Hong-Jae;Cho, Jae-Yeol;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.481-488
    • /
    • 2015
  • The purpose of this study is to provide analytical method to reasonably predict the overall behavior up to destruction of reinforced concrete panel specimens using high-strength reinforcing bar. A total of 12 specimens of reinforced concrete panels with a wall thickness one-third the size of the actual nuclear containment structures under various loading conditions and design parameters were selected and the analysis was performed using a non-linear finite element analysis program (RCAHEST) was developed by the authors. The mean and coefficient of variation for shear strength at cracking point and maximum shear strength from the experiment and analysis results was predicted 1.03 and 12%, 0.97 and 9%, respectively. For the shear strain at the maximum shear strength from the experiment and analysis results was predicted 0.96 and 30%, respectively. Based on the results, the analysis program that was applied newly modified constitutive equation in this study is judged as having a relatively high reliability for the analysis results.

Initial Imperfection and Axial Strength of Struts with Octagonal Hollow Section fabricated from HR Plate (열연강판 팔각강관 버팀보의 초기편심과 축방향 압축강도)

  • Jo, Jae Byung
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Developed in this study were Octagonal-hollow-section(OHS) struts, whose compressive strengths against flexural and local buckling is higher than H-shape or rectangular-hollow-section(RHS) struts with the same unit weight. OHS members are also advantageous in handling and storing compared to circular hollow sections(CHS). OHS members were fabricated from HR Plates by cold forming and fillet welding. 5 numbers of 20m long OHS struts were assembled, each of which consist of two 9.6m long OHS member and two end connection elements made of cast iron. The compressive strength of the OHS strut was evaluated by comparing the test results, design codes and FEM analysis each other. Test results show that all of the struts have almost same or larger compressive strength than Korean Road Bridge Design Code(KRBDC) (2012). The initial imperfections can be estimated by using measured strains and are turned out to be less than L/450 for all the struts tested. The results of FEM analysis show that the variation of initial imperfection has less effects on the compressive strength for struts with vertical surcharge than for those with self-weight only, while the strength decreases as the initial imperfection increases. As the result of this study, the allowable initial imperfection for 20m long OHS struts is recommended to be less than L/350 on job sites.

Bending Effect of Laminated Plates with a Circular Hole Repaired by Single-Sided Patch Based on p-Convergent Full Layerwise Model (p-수렴 완전층별모델에 의한 일면패치로 보강된 원공 적층판의 휨효과)

  • Woo, Kwang-Sung;Yang, Seung-Ho;Ahn, Jae-Seok;Shin, Young-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.463-474
    • /
    • 2009
  • Double symmetric patch repair of existing structures always causes membrane action only, however, in many cases this technique is not practical. On the other hand, the bending stiffness of the patch and the skin increases as tensile loading is increased and affects the bending deformation significantly in the case of single-sided patch repair. In this study, the p-convergent full layerwise model has been proposed to determine the stress concentration factor in the vicinity of a circular hole as well as across the thickness of plates with single-sided patch repair. In assumed displacement field, the strain-displacement relations and 3-D constitutive equations of a layer are obtained by the combination of 2-D and 3-D hierarchical shape functions. The transfinite mapping technique has been used to represent a circular boundary and Gauss-Lobatto numerical integration is implemented in order to directly obtain stresses occurred at the nodal points of each layer without other extrapolation techniques. The accuracy and simplicity of the present model are verified with comparison of the previous results in literatures using experiment and conventional 3-D finite element. Also, the bending effect has been investigated with various patch types like square, circular and annular shape.

Experimental Verification of Flexural Response for Strengthened R/C Beams by Stirrup Partial-Cutting Near Surface Mounted Using CFRP Plate (CFRP 플레이트 적용 스터럽 부분절단형 표면매립공법으로 보강된 철근콘크리트 보의 휨 거동에 대한 실험적 평가)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Gi-Hong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.671-679
    • /
    • 2008
  • The near surface mounted (NSM) FRP strengthening method has been conventionally applied for strengthening the deteriorated concrete structures. The NSM strengthening method, however, has been issued with the problem of limitation of the cutting depth which is usually considered as concrete cover depth. This may be related with degradation of bonding performance in long-term service state. To improve the debonding problem, in this study, the Stirrup partial-cutting NSM (SCNSM) strengthening method using CFRP plate was newly developed. SCNSM strengthening method can be effectively applied to the deteriorated concrete structure without any troubles of insufficient cutting depth. To experimentally verify the structural behavior, the flexural test of the concrete beam by using the SCNSM strengthening method was conducted with the test variable as the strengthening length (32%, 48%, 70%, 80%, 96% of span length). In the result of the test, the NSM and SCNSM strengthened specimen showed similar structural behavior with load-deflection, mode of failure. Additionally, there was no apparent structural degradation by the stirrup partial-cutting. Consequently, it was evaluated that the SCNSM strengthening method can be useful for seriously damaged concrete structures that is hard to apply the conventional NSM strengthening method for increasing the structural capacity.

Analysis of the Behavior of Reinforced Earth Retaining Walls Constructed on Soft Ground Using the Replacement Method (치환공법을 적용한 연약지반에 시공된 보강토옹벽의 거동해석)

  • Ki, Wan-Seo;Joo, Seung-Wan;Kim, Sun-Hak
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.601-613
    • /
    • 2007
  • It is reported that factors affecting the behavior of reinforced earth retaining walls built on soft ground are not only basic physical properties but also the increase of load by the reinforced earth retaining walls, consolidation period, pore water pressure, etc. This study analyzed the behavior of reinforced earth retaining walls and soft ground using SAGE CRISP, a ground analysis program. First, we examined the effect of the replacement method, which was to prevent the excessive displacement of reinforced earth retaining walls, in improving the behavior of the walls. Second, we compared and analyzed how the behavior of ground is affected by the vertical interval of stiffeners on the back of reinforced earth retaining walls after the application of the replacement method. Lastly, we proposed the optimal replacement width and depth in the application of the replacement method. The results of this study proved that the replacement method is considerably effective in improving the behavior of reinforced earth retaining walls. In addition, the vertical interval of stiffeners on the back of reinforced earth retaining walls appeared effective in improving the horizontal displacement of the top of retaining walls but not much effective in improving the vertical displacement of the back of retaining walls. In addition, improvement in horizontal-vertical displacement resulting from the increase in replacement width was not significant and this suggests that the increase of replacement width is not necessary. With regard to an adequate replacement depth, we proposed the ratio of replacement depth to the height of retaining walls(D/H) according to the ratio of the thickness of the soft layer to the height of retaining walls(H/T).

High-Velocity Impact Experiment on Impact Resistance of Steel Fiber-Reinforced Concrete Panels with Wire Mesh (와이어매쉬와 강섬유로 보강된 콘크리트 패널의 내충격성 규명을 위한 고속충격실험)

  • Kim, Sang-Hee;Hong, Sung-Gul;Yun, Hyun-Do;Kim, Gyu-Yong;Kang, Thomas H.K.
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.103-113
    • /
    • 2015
  • This paper studies impact performance of wire-mesh and steel fiber-reinforced concrete based on high-velocity impact experiments using hard spherical balls. In this experimental study, panel specimens were tested with various parameters such as steel fiber volume fraction, presence/absence of wire mesh, panel thickness, impact velocity, and aggregate size for the comparison of impact resistance performance for each specimen. While improvement of the impact resistance for reducing the penetration depth is barely affected with steel fiber volume fraction, the impact resistance to scabbing and perforation is improved substantially. This was due to the fact that the steel fiber had bridging effects in concrete matrix. The wire mesh helped minimizing the crater diameter of front and back face and enhanced the impact resistance to scabbing and perforation; however, the wire mesh did not affect the penetration depth. The wire mesh also reduced the bending deformation of the specimen with wire mesh, though some specimens had splitting bond failure on the rear face. Additionally, use of 20 mm aggregates is superior to 8 mm aggregates in terms of penetration depth, but for reducing the crater diameter on front and back faces, the use of 8 mm aggregates would be more efficient.

Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet (FRP로 보강한 비보강 조적 벽체의 전단강도 산정)

  • Bae, Baek-Il;Yun, Hyo-Jin;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.305-313
    • /
    • 2012
  • Unreinforced masonry buildings represent a significant portion of the existing and historical buildings around the world. Recent earthquakes have shown the need for seismic retrofitting for these types of buildings. Various types of retrofitting materials (i.e., shotcrete, ECC and Fiber Reinforced Polymer sheets (FRPs)) for unreinforced masonry buildings (URM) have been developed. Engineers prefer to use FRPs, because these materials enhance the shear strength of the wall without expansion of wall sectional area and adding weight to the total structure. However, the complexity of the mechanical behavior of the masonry wall and the lack of experimental data from walls retrofitted by FRPs may cause problems for engineers to determine an appropriate retrofitting level. This paper investigate in-plane behavior of URM and retrofitted masonry walls using two different types of FRP materials to determine and provide information for the retrofitting effect of FRPs on masonry shear walls. Specimens were designed to idealize the wall of a low-rise apartment which was built in 1970s in Korea with no seismic reinforcements with an aspect ratio of 1. Retrofitting materials were carbon FRP and Hybrid sheets which have different elastic modulus and ultimate strain capacities. Consequently, this study evaluated the structural capacity of masonry shear walls and the retrofitting effect of an FRP sheet for in-plane behavior. Also, the results were compared to the results obtained from the evaluation method for a reinforced concrete beam retrofitted with FRPs.