• Title/Summary/Keyword: 두께감육

Search Result 37, Processing Time 0.033 seconds

Supplementation of Flow Accelerated Corrosion Prediction Program Using Numerical Analysis Technique (수치해석 기법을 활용한 FAC 예측 프로그램 보완)

  • Hwang, Kyeong-Mo;Jin, Tae-Eun;Park, Won;Oh, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.437-442
    • /
    • 2010
  • Flow-accelerated corrosion (FAC) leads to thinning of steel pipe walls that are exposed to flowing water or wet steam. From experience, it is seen that FAC damage to piping at fossil and nuclear plants can result in outages that require expensive repairs and can affect plant reliability and safety. CHECWORKS have been utilized in domestic nuclear plants as a predictive tool to assist FAC engineers in planning inspections and evaluating the inspection data so that piping failures caused by FAC can be prevented. However, CHECWORKS may be occasionally ignore local susceptible portions when predicting FAC damage in a group of pipelines after constructing a database for all the secondary side piping in nuclear plants. This paper describes the methodologies that can complement CHECWORKS and the verifications of CHECWORKS prediction results using numerical analysis. FAC susceptible locations determined using CHECWORKS for two pipeline groups of a nuclear plant was compared with determined using the numerical-analysis-based FLUENT.

Development of the Modified Preprocessing Method for Pipe Wall Thinning Data in Nuclear Power Plants (원자력 발전소 배관 감육 측정데이터의 개선된 전처리 방법 개발)

  • Seong-Bin Mun;Sang-Hoon Lee;Young-Jin Oh;Sung-Ryul Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.146-154
    • /
    • 2023
  • In nuclear power plants, ultrasonic test for pipe wall thickness measurement is used during periodic inspections to prevent pipe rupture due to pipe wall thinning. However, when measuring pipe wall thickness using ultrasonic test, a significant amount of measurement error occurs due to the on-site conditions of the nuclear power plant. If the maximum pipe wall thinning rate is decided by the measured pipe wall thickness containing a significant error, the pipe wall thinning rate data have significant uncertainty and systematic overestimation. This study proposes preprocessing of pipe wall thinning measurement data using support vector machine regression algorithm. By using support vector machine, pipe wall thinning measurement data can be smoothened and accordingly uncertainty and systematic overestimation of the estimated pipe wall thinning rate data can be reduced.

Non-contact Ultrasonic Technique for the Thin Defect Evaluation by the Lamb-EMAT (비접촉 Lamb-EMAT를 이용한 두께감육 평가에 관한 연구)

  • Kim, Tae-Hyeong;Park, Ik-Geun;Lee, Cheol-Gu;Kim, Yong-Gwon;Kim, Hyeon-Muk;Jo, Yong-Sang
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.194-196
    • /
    • 2005
  • Ultrasonic guided waves are gaining increasing attention for the inspection of platelike and rodlike structures. At the same time, inspection methods that do not require contact with the test piece are being developed for advanced applications. This paper capitalizes on recent advances in the areas of guided wave ultrasonics and noncontact ultrasonics to demonstrate a superior method for the nondestructive detection of thinning defects simulating hidden corrosion in thin aluminum plates. The proposed approach uses EMAT(electro-magnetic acoustic transducer) for the noncontact generation and detection of guided plate waves. Interesting features in the dispersive behavior of selected guided modes are used for the detection of plate thinning. It is shown that mode cutoff measurements provide a qualitative detection of thinning defects. Measurement of the mode group velocity can be also used to quantify of thinning depth.

  • PDF

Development of Tomograph Technique for Evaluating Thickness Reduction using Noncontact Ultrasonic Sensor Network (두께감육 평가를 위한 비접촉식 초음파 센서 네트워크를 이용한 토모그래프 기술 개발)

  • Lee, J.M.;Kim, Y.K.;Park, I.K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.27-31
    • /
    • 2014
  • This paper describes a tomographic imaging technique for evaluating the thickness reduction of a plate-like structure using a noncontact sensor network based on an electromagnetic acoustic transducer that generates shear horizontal plate waves. Because this technique is based on the effect of mode cutoff and time of flight of guided waves caused by a change in thickness, the tomographic image provides information on the presence of defects in the structure. To verify the performance of the method, artificial defects with various thickness reduction ratios were machined in an aluminum plate, and the tomographic imaging results are reported. The results show that the generated tomographic image displays the thickness reductions and can identify their locations. Therefore, the proposed technique has good potential as a tool for health monitoring of the integrity of plate-like structures.

Evaluation of Thickness Reduction in an Aluminum Sheet using SH-EMAT (SH-EMAT를 이용한 알루미늄 박판의 두께감육 평가)

  • Kim, Yong-Kwon;Park, Ik-Kuen
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.74-78
    • /
    • 2010
  • In this paper, a non-contact method of evaluating the thickness reduction in an aluminum sheet caused by corrosion and friction using SH-EMAT (shear horizontal, electromagnetic acoustic transducer) is described. Since this method is based on the measurement of the time-of-flight and amplitude change of guided waves caused from the thickness reduction, it provides information on the thinning defects. Information was obtained on the changes of the various wave features, such as their time-of-flight and amplitude, and their correlations with the thickness reduction were investigated. The interesting features in the dispersive behavior of selected guided modes were used for the detection of thinning defects. The measurements of these features using SH waves were performed on aluminum specimens with regions thinned by 7.2% to 29.5% of the total thickness. It is shown that the time-of-flight measurement provides an estimation of the thickness reduction and length of the thinning defects.

Defect Detection of the Wall Thinning Pipe of the Nuclear Power Plant Using Infrared Thermography (적외선열화상을 이용한 원자력발전소 감육 배관의 결함 검출)

  • Kim, Kyeong-Suk;Chang, Ho-Sub;Hong, Dong-Pyo;Park, Chan-Joo;Na, Sung-Won;Kim, Kyung-Su;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.85-90
    • /
    • 2010
  • The infrared energy is emitted in the infrared wavelength range that corresponds to the surface temperature of a object which has temperature that is over the absolute the temperature(OK). The infrared thermography (IRT) is a non-destrnctive testing method that provides thermal video for the user in real-time by converting the infrared quantity that is detected by the infrared detector into temperature. The pipes of nuclear power plant(NPP) could be thinned by the corrosion and fatigue and the defect could lead to a big accident. For this reason, the effective non-destructive testing method is necessary. In this study, the relationship between the measured temperature and the defect depth or size of NPP pipes were recognized and that was applied to detect the wall thinning defects of NPP pipes.

Development of Methodology to Measure the Thickness of Pipes using Magnetic Field (마그네틱 필드를 이용한 배관 두께 측정 방법론 개발)

  • Kim, Mi Na;Chai, Jang Bom;Park, Il Han;Kim, E Noch
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.47-53
    • /
    • 2010
  • In this research project, development of methodology to measure the thickness of pipes in the wide range using magnetic field. The magnetic field spreading in the sensor and the plate was modeled in the cases of the various thicknesses in plate. Based on the analysis, sensors were designed, manufactured and tested to optimize the specifications of the sensor. The sensor can be used in high temperature through calibration. And the uncertainty of the sensor was estimated.

  • PDF

침식부식으로 인한 원전 2차측 배관의 잔여수명 예측 시스템 개발 및 적용

  • 황경모;노희영;진태은
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11b
    • /
    • pp.717-722
    • /
    • 1996
  • 원자력 발전소 2차측 배관에서 가장 심각한 문제로 대두되고 있는 침식부식 현상을 예측/감시하는 시스템을 개발하여 특정 원전 2차 계통의 전 부분을 망라하여 실제 평가를 수행하였으며, 이를 현장에서 초음파검사로 측정한 결과와 비교하였다. 본 시스템으로 평가한 침식부식률을 실제 측정으로 산출한 침식부식률과 비교해 본 결과, 오차 100% 이내에 포함되는 부위가 92%에 달하는 것으로 확인되었다. 본 시스템은 침식부식 이론 및 관련 변수들로부터 단상 및 2상유체 배관의 침식부식률과 ASME 코드 및 BS 코드의 허용기준에 따른 잔여수명을 예측할 수 있으며, 침식부식으로 인한 배관의 두께가 최소허용치 이하로 떨어질 경우에는 국부 배관감육평가를 수행 할 수 있는 시스템의 형태로 개발하였다.

  • PDF

Measuring Plate Thickness Using Spatial Local Wavenumber Filtering (국소 공간 웨이브넘버 필터링 기법을 이용한 평판 구조물 두께 측정)

  • Kang, To;Lee, Jeong Han;Han, Soon Woo;Park, Jin Ho;Park, Gyuhae;Jeon, Jun Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.370-376
    • /
    • 2016
  • Corrosion on the surface of a structure can generate cracks or cause walls to thin. This can lead to fracturing, which can eventually lead to fatalities and property loss. In an effort to prevent this, laser imaging technology has been used over the last ten years to detect thin-plate structure, or relatively thin piping. The most common laser imaging was used to develop a new technology for inspecting and imaging a desired area in order to scan various structures for thin-plate structure and thin piping. However, this method builds images by measuring waves reflected from defects, and subsequently has a considerable time delay of a few milliseconds at each scanning point. In addition, the complexity of the system is high, due to additional required components, such as laser-focusing parts. This paper proposes a laser imaging method with an increased scanning speed, based on excitation and the measurement of standing waves in structures. The wavenumber of standing waves changes at sections with a geometrical discontinuity, such as thickness. Therefore, it is possible to detect defects in a structure by generating standing waves with a single frequency and scanning the waves at each point by with the laser scanning system. The proposed technique is demonstrated on a wall-thinned plate with a linear thickness variation.

Development of Wall Thinning Distinction Method using the Multi-inspecting UT Data of Carbon Steel Piping (탄소강배관 다중 UT 측정두께를 활용한 감육여부 판별법 개발)

  • Hwang, Kyeong Mo;Yun, Hun;Lee, Chan Kyoo
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.173-178
    • /
    • 2012
  • To manage the wall thinning of carbon steel piping in nuclear power plants, the utility of Korea has performed thickness inspection for some quantity of pipe components during refueling outages and determined whether repair or replacement after evaluating UT (Ultrasonic Test) data. When the existing UT data evaluation methods, such as Band, Blanket, PTP (Point to Point) Methods, are applied to a certain pipe component, unnecessary re-inspecting situations may be generated even though the component does not thinned. In those cases, economical loss caused by repeated inspection and problems of maintaining the pipe integrity followed by decreasing of newly inspected components may be generated. EPRI (Electric Power Research Institute) in USA has suggested several statistical methods, TPM (Total Point Method), LSS (Least Square Slope) Method, etc. to distinguish whether multiple inspecting components have thinned or not. This paper presents the analysis results for multiple inspecting components over three times based on both NAM (Near Area of Minimum) Method developed by KEPCO-E&C and the other methods suggested by EPRI.