• Title/Summary/Keyword: 되메움

Search Result 68, Processing Time 0.021 seconds

Vertical Earth Pressure on Buried Pipes in Ditches due to Fills (강설매설관에 작용하는 되메움토 연직토압)

  • Park, Sangwon;Do, Jongnam;Jung, Jongju;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • In this paper, vertical earth pressure by CANDE program is compared with that by some equations such as the equation by Janssen, Marston, Spangler, and Handy to calculate vertical earth pressure with respect to several factors acting on a rigid buried-pipe filled cohesionless soil. As a result of comparative analysis of vertical earth pressure with each equation, primary factors are affected by backfill width, backfill depth and wall friction. Moreover, vertical earth pressure is linearly increased with backfill depth and width from results of the finite element method. Handy's Equation is reasonable for finite element method while Marston equation is overestimated in case of the design of buried-pipe and box.

  • PDF

A Study on Alternative Backfill Material for Pre-insulated Pipe through the Field Tests (현장시험을 통한 이중보온관 되메움 대체재료에 관한 연구)

  • Choi, Bong-Hyuck;Kim, Jin-Man;Yoo, Han-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1C
    • /
    • pp.1-6
    • /
    • 2012
  • In this study, field tests were performed to evaluate the stability of pre-insulated pipe during the compaction operation and to recommend an alternative backfill material. Three types of natural sand (fine-grained and medium-grained, coarse-grained sand), crushed sand and two types of gravel (10 mm, 20 mm) were used as backfill material in the field tests. Field tests were performed to determine the behavior (earth-pressure and deformation, installation damage) of the pre-insulated pipe due to variation of different types of backfill material. Based on the evaluation and comparison of field test results, it was determined that crushed sand is the most suitable back-fill material that can be used as an alternative for medium grained sand for pre-insulated pipes with respect to the engineering behavior and material supply.

A Study on Power Transmission Capacity of Improved Backfill Materials at Underground Cables Installed in Duct Type (관로포설 지중케이블에서 개량되메움재 적용시의 송전용량 증대효과 검토)

  • Jang, T.I.;Kang, J.W.;Lee, D.I.;Kim, J.S.;Tack, E.G.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.345-347
    • /
    • 2002
  • 이 논문은 현재 지중송전 케이블에서 관로포설용 되메움재로서 널리 사용되고 있는 모래를 대신할 수 있는 개량 되메움재 연구하고, 이에 대한 송전용량 증대효과를 살펴본 것이다. 먼저, 기존 되메움재인 모래 및 개량 되메움새에 대한 토양 열특성을 비교 검토하고, 다음으로 개량 되메움재를 실선로에 적용할 때의 송전용량 증대 효과를 시뮬레이션을 통해 확인하였다.

  • PDF

A Study on Earth Pressure in Unsymmetrical Narrow Backfill Space (비대칭 좁은 공간에서의 되메움 토압에 관한 연구)

  • 문창열
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.261-277
    • /
    • 1999
  • The horizontal and vertical earth pressures in backfill space which is narrowly excavated like ditch are affected by the share of ditch backfill space and the wall friction between excavated surface and backfill soil. In this paper, for the excavated surface the Handy's equation of a symmetric vertical case and the Kellogg's equation of a symmetric sloped one are modified to show the minor principal stress arch for the unsymmetrical excavated backfill space. Compared with the soil test box result, a similarity in magnitude and distribution of backfill earth pressure shows that the earth pressure has been observed. The backfill earth pressure in unsymmetrically sloped space has been shown twice as much as the one in vertically excavated space and also remarkable decline of arching for the former case. It is verified that the earth pressure equation should account the shape and size of backfill space to calculate the earth pressure for similar structure to the one handled in this study.

  • PDF

Lateral Earth Pressures on Symmetrical Backslope Walls (대칭경사진 벽체의 되메움 수평토압에 관한 연구)

  • 이종규;허경한
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.147-155
    • /
    • 2001
  • 좁은 되메움 공간의 벽체가 연직 또는 한쪽 벽체만이 경사진 경우 수평토압에 관한 연구는 국내외에서 상당히 진전되어 왔으나, 대칭으로 경사진 경우의 연구는 미흡한 실정이다. 본 연구는 되메움 공간의 벽체가 대칭으로 경사지고 벽체간 하부폭이 다를 때 발생되는 수평토압에 관한 거동을 구명하기 위하여 시도되었다. 이를 위하여 모형토조를 사용하여 되메움 공간의 벽체가 대칭으로 경사진 경우 벽체의 경사각, 하부폭, 벽마찰각, 상대밀도를 변화시켜 총 24종류의 모형실험을 수행하였고, 이 결과를 Kellogg(1993)제안식, 벽면경사를 고려한 수정 제안식 및 벽면마찰반력으로부터 구한 수평토압과 비교, 분석하였다. 연구 결과 벽면마찰반력을 고려한 경우 평균연직토압을 적용하였음에도 Arching 효과가 발휘된 실험결과와 가장 근소한 차이를 나타내었다.

  • PDF

A Study on the Lateral Earthpressure at Behind Structure for Backfill by Sand (구조물 배면에 사질토 되메움시 유발되는 수평토압에 관한연구)

  • Lee, Sang-Duk;Kang, Se-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.11-18
    • /
    • 2011
  • In this study, the reinforcing effect of geogrids in the narrow backfill by sand was experimentally studied. In the model tests, the size of space and the slope of the cut off slope were varied out. The resultant and the distribution of lateral earth pressure were measured. Width of backfill space varied 10 cm, 20 cm, 30 cm at the lower wall level and angle of the cut off slope varied $90^{\circ}$, $75^{\circ}$, $60^{\circ}$. Geogrids were installed in the backfill. Measured results showed that the distribution of the lateral earth pressure due to the narrow backfill developed in a arching shape. And the earth pressure was reduced due to the reinforcement of the backfill by geogrid. geogrid helps reduction of lateral earth pressure.

Evaluation of Surcharge toads Acting in Backfilled Space (되메움 공간의 상재하중 영향평가에 관한 연구)

  • Moon Chang-Yeul;Kim Hee-Dong;Choi Heon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.167-176
    • /
    • 2004
  • Underground structures will be affected by the additional surcharge loads such as traffic load et al. Terzaghi (1956) suggested the equation on the influences of surcharge loads in vertically backfilled spaces. In field, the shapes of backfill spaces are not always formed vertically. Then the Terzagi (1956) equation is not suitable to use because of boundary condition. This study suggests equation to calculate the stress in backfilled space caused by surcharge loads when the backfilled space is sloped symmetrically. The suggested equation is verified by carbon box test and numerical analysis. The experimental results show good agreement with the suggested equation but the numerical analysis result shows a little disagreement. The differences are estimated to be caused by the fact that ground made by carbon rod has become more dense and internal frction and wall friction has increased itself as surcharge load is added but that this increase can not be considered in the numerical analysis. The suggested equation shows good agreement with Terzaghi (1956) equation in case of sloped backfill ground. According to the results, it is considered that the suggested equation can be applied not only to sloped space but also to vertical space. Further investigation using full scale experiment is needed.

A Study on the Comparison among Effect of Thermal Dissipation of Backfill Materials for Underground Power Cables (지중송전관로 되메움재의 종류에 따른 열 소산 효과의 비교에 관한 연구)

  • Kim, You-Seong;Park, Young-Jun;Cho, Dae-Seong;Kim, Jae-Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.83-92
    • /
    • 2013
  • Backfill material with thermal resistivity which has $50^{\circ}C$-cm/Watt in wet and $100^{\circ}C$-cm/Watt in dry is requested to improve the power transfer capability for dissipation of heat production in underground power cables. In the field test performed by buried cable backfills, the backfill material developed from this study is compared with river sand and weathered soil (native soil) to investigate the effect of heat transfer in various seasons and locations of thermal sensors. As a result, the developed backfill material is faster approaching yielding temperature (critical heat) than that of river sand and weathered soil, and it has good dissipation capacity rather than other materials by keeping moisture content at dry season.

Horizontal Stress Based on the Calculation of Lateral Stress Ratio in Unsymmetrical Space (비대칭 공간의 수평응력비 산정에 따른 수평응력에 관한 연구)

  • Moon Chang-Yeul;Lee Soo-Ki;Kwon Seung-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.177-189
    • /
    • 2004
  • The backfilled space carl have various shapes such as vertical or lateral symmetric, unsymmetric slope depending on field conditions. Kellogg (1993) suggested the different equations for the backfill earth pressure and the lateral stress ratio considering that the stresses are different between the symmetrically sloped backfilled space and the vertical one. Kellogg (1993) assumed the stress generated on sloped wall surface as the simple internal friction angle of backfilled soil. However, Moon (1997) suggested modified Kellogg equation assuming that stress behavior in the sloped wall will be varied according to the rotation angle of principal stress and the friction of sloped wall surface. This study has compared and investigated the horizontal stresss of unsymmetrical backfilled space numerically and experimentally obtained when Kellogg lateral stress ratio is appled to and when average lateral stress ratio considering unsymmetric backfill slop of left and right are applied to the modified Kellogg equation. It is shown that the horizontal stress on the sloped wall has good match numerically and experimentally in the modified Kellogg equation when Kellogg's lateral stress ratio in symmetric condition is applied to the unsymmetric condition. But the horizontal stress on the vertical wall shows disagreement numerically and experimentally. The horizontal stress results in good agreement numerically and experimentally when the average lateral stress ratio of left and right at unsymmetric slop as applied to the modified Kellogg equation. Therefore, it is estimated that the application of the average lateral stress ratio to the left and right wall should be considered when backfilled space formed unsymmetric conditions.

Analysis on Behavior Characteristics of Underground Facility Backfilled with Clsm According to Adjacent Excavation (CLSM으로 되메움된 지하 인프라 매설물의 근접 굴착에 따른 거동특성 분석 )

  • Seung-Kyong, You;Nam-Jae, Yu;Gigwon, Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.101-109
    • /
    • 2022
  • This study describes the results of model experiment to analyze the effect of backfill material types on the behavior of underground facility. In the model experiment, backfill materials around the existing underground facility were applied with soil (Jumunjin standard sand) and CLSM. The displacement of underground facility was analyzed for each excavation stage considering the separation distance between the excavation surface and the backfill area based on the experimental results. When soil was applied as a backfill material, the soil on the back of the excavation surface collapsed by excavation and formed an angle of repose, and the process of slope stability was repeated at each excavation stage. In addition, the displacement of underground facility began to occur in the excavation stage that the failure line of soil passes the installation location of the underground facility. When CLSM was applied as a backfill material, there was almost no horizontal and vertical displacement of the ground regardless of the separation distance from the excavation surface even when excavation proceeded to the backfill depth. Therefore, this result showed that it can have a resistance effect against the lateral earth pressure generated and the collapse of the original ground by adjacent excavation, if a backfill material with high stiffness such as CLSM is applied.