• Title/Summary/Keyword: 되먹임제어

Search Result 106, Processing Time 0.025 seconds

Development of New Focus Control Model for Optical Disk Drives (광디스크 드라이브의 새로운 포커스 제어모델 개발)

  • Jee, Jung-Geun;Chang, Young-Bae;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1004-1009
    • /
    • 2002
  • There are four servo systems in a DVD drive such as a focus servo system, a tracking servo system, a sled servo system and a spindle servo system. Focus servo system maintains relative distance between lens and disk. In this paper, two plant models for the focus servo system will be presented. One of them is conventional and the other is newly developed. Focus error signal between lens and disk is detected using LDV 2 beam method. The system is observable and all states are estimated. Full states feedback controller and minimum order observed are designed using those states. Impulse responses are simulated. And experiment is performed to compare with responses of conventional model.

  • PDF

Development of New Focus Control Model for Optical Disk Drives (광디스크 드라이브의 새로운 포커스 제어모델 재발)

  • Jee, Jung-Geun;Chang, Young-Bae;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.397.2-397
    • /
    • 2002
  • There are 4 servo systems in a DVD drive such as a focus servo system, a tracking servo system, a sled servo system and a spindle servo system. Focus servo system maintains relative distance between lens and disk. In this paper, two plant models for the focus servo system will be presented. One of them is newly developed and the other is conventional. Focus error signal between lens and disk is detected using LDV 2 beam method. (omitted)

  • PDF

Implementation of Auto-tuning Positive Position Feedback Controller Using DSP Chip and Microcontroller (디지털신호처리 칩과 마이크로 컨트롤러를 이용한 자동 조정 양변위 되먹임 제어기의 구현)

  • Kwak, Moon K.;Kim, Ki-Young;Bang, Se-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.954-961
    • /
    • 2005
  • This paper is concerned with the implementation of auto-tuning positive position feedback controller using a digital signal processor and microcontroller. The main advantage of the positive position feedback controller is that it can control a natural mode of interest by tuning the filter frequency of the positive position feedback controller to the natural frequency of the target mode. However, the positive position feedback controller loses its advantage when mistuned. In this paper, the fast fourier transform algorithm is implemented on the microcontroller whereas the positive position feedback controller is implemented on the digital signal processor. After calculating the frequency which affects the vibrations of structure most, the result is transferred to the digital signal processor. The digital signal processor updates the information on the frequency to be controlled so that it can cope with both internal and external changes. The proposed scheme was installed and tested using a beam equipped with piezoceramic sensor and actuator. The experimental results show that the auto-tuning positive position feedback controller proposed in this paper can suppress vibrations even when the target structure undergoes structural change thus validating the approach.

Implementation of Adaptive Positive Popsition Feedback Controller Using DSP chip and Microcontroller (디지털신호처리 칩과 마이크로 컨트롤러를 이용한 적응 양변위 되먹임 제어기의 구현)

  • Kwak, Moon-K.;Kim, Ki-Young;Bang, Se-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.498-503
    • /
    • 2005
  • This paper is concerned with the implementation of adaptive positive position feedback controller using a digital signal processor and microcontroller The main advantage of the positive position feedback controller is that it can control a natural mode of interest by tuning the filter frequency of the positive position feedback controller to the natural frequency of the target mode. However, the positive position feedback controller loses its advantage when mistuned. In this paper, the fast fourier transform algorithm is implemented on the microcontroller whereas the positive position feedback controller is implemented on the digital signal processor. After calculating the frequency which affects the vibrations of structure most the result is transferred to the digital signal processor. The digital signal processor updates the information on the frequency to be controlled so that it can cope with both internal and external changes. The proposed scheme was installed and tested using a beam equipped with piezoceramic sensor and actuator. The experimental results show that the adaptive positive position feedback controller proposed in this paper can suppress vibrations even when the target structure undergoes structural change thus validating the approach.

  • PDF

Active Control of Honeycomb Trim Panels for Aircrafts (항공기용 하니콤 트림판넬의 능동제어)

  • Elliott Stephan J.;Jeong, W.B.;Hong, Chin-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.464-473
    • /
    • 2006
  • This paper summarises theoretical and experimental work on the feedback control of sound radiation from honeycomb panels using piezoceramic actuators. It is motivated by the problem of sound transmission in aircraft, specifically the active control of trim panels. Trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. Local coupling of the closely-spaced sensor and actuator was observed experimentally and modelled using a single degree of freedom system. The effect of the local coupling was to roll-off the response between the actuator and sensor at high frequencies, so that a feedback control system can have high gain margins. Unfortunately, only relatively poor global performance is then achieved because of localisation of reduction around the actuator. This localisation prompts the investigation of a multichannel active control system. Globalised reduction was predicted using a model of 12 channel direct velocity feedback control. The multichannel system, however, does not appear to yield a significant improvement in the performance because of decreased gain margin.

  • PDF

Vibration Control of Hvbrid Smart Structure Using PZT Patches and ER Fluids (PZT와 ER유체를 적용한 복합지능구조물의 진동제어)

  • Yun, Shin-Il;Park, Keun-Hyo;Han, Sang-Bo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.734-739
    • /
    • 2003
  • Many types of smart materials and control laws are available to actively adjust the structure from various external disturbances. Usually, a certain type of control laws to activate a specific smart material is well established, but the effectiveness of the control scheme is limited by the choice of the smart materials and the responses of the structure. ER fluid is adequate to provide relatively large control force, on the other hand, the PZT patches are suitable to provide small but arbitrary control forces at any point along the structure. It was found that active vibration control mechanism using ER fluid failed to suppress the excitation off the resonant frequency with changed structural characteristics along the frequency response function of the closed loop of the control system. To compensate this additional peak of the closed loop system, PPF control using PZT as an actuator is added to construct a hybrid controller.

  • PDF

A Study on an Input-Output Controller Based on the Time-Scale Properties of an Underwater Vehicle Dynamics (수중 운동체의 운동 특성을 고려한 입/출력 제어기 구성에 관한 고찰)

  • Jo, Gyung-Nam;Seo, Dong-C.;Choi, Hang-S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.469-476
    • /
    • 2008
  • In this paper, it is shown that an input-output (I/O) feedback linearized controller can be designed rationally by utilizing the time-scale properties of heave and pitch for an underwater vehicle. It is assumed that the dynamics of the vehicle is restricted to the vertical plane. An output-feedback control is designed, which stabilizes steady cruising paths. It is shown that the vehicle dynamics with acceleration as output becomes minimum phase. The dynamics can be transformed into a reduced system through a kind of partial linearization and singular perturbation technique. The reduced system is not only minimum phase but also exactly I/O linearizable via feedback. The I/O dynamic characteristics of the heave and pitch modes can be made linear and decoupled. Furthermore it becomes independent of cruising condition such as vehicle velocity. This study may help for designing autopilot systems for underwater vehicles.

Development of the combustion noise index and control algorithm through signal processing of in-cylinder pressure for a diesel engine (연소압력 신호처리를 통한 디젤엔진 연소음 지수 및 제어 알고리듬 개발)

  • Jin, Jaemin;Lee, Dongchul;Jung, Insoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.208-215
    • /
    • 2016
  • To control and improve a combustion behavior of an engine, various studies for the in-cylinder pressure have been consistently carried out. In this paper, the level of the combustion noise for a diesel engine is estimated from the in-cylinder pressure and defined as the combustion noise index. The combustion noise index is calculated from the FFT(Fast Fourier Transform) of the in-cylinder pressure and its validity is verified. The control system based on the combustion noise index is developed and implemented in a vehicle. A number of injection parameters are controlled to meet the desired combustion noise index, and the combustion noise of a vehicle is improved up to 4.0 dB(A) in the specified frequency band.

Development of Anti-windup Techniques for Cascade Control System (다단제어용 안티 와인드업 기술 개발)

  • Bae, Jeong Eun;Kim, Kyeong Hoon;Chu, Syng Chul;Heo, Jaepil;Lim, Sanghun;Sung, Su Whan
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.430-437
    • /
    • 2020
  • In this research, the anti-windup techniques for the cascade control system are newly developed. Cascade control system has an additional internal feedback control loop to reject disturbances better than the conventional control system. Remarkable difference between the conventional single-loop control system and the cascade control system is the interaction that the controller output saturation of the secondary control loop strongly affects the integral action of the primary control loop. In industry, local back calculation anti-windup method has been mainly used for each controller without considering the interaction between the two controllers. But it cannot eliminate the integral-windup of the primary controller originated from the saturation of the secondary controller output. To solve the problem, the two anti-windup techniques of the cascade conditional integration and the cascade back calculation are proposed in this research by extending the local anti-windup techniques for the single-loop control system to the cascade control system. Simulation confirmed that the proposed methods can effectively remove the integral windup of the primary controller caused by the saturation of the secondary controller output and show good control performances for various types of processes and controllers. If the reliability of the proposed methods is proved through the applications to real processes in the future, they would highly contribute to improving the control performances of the cascade control system in industry.

Positive Position Feedback Control of Plate Vibrations Using Moment Pair Actuators (모멘트쌍 액추에이터가 적용된 PPF에 의한 평판의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;You, Ho-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.383-392
    • /
    • 2012
  • This paper reports the active vibration control of plates using a positive position feedback(PPF) controller with moment pair actuators. The equations of motion of the plates under a force and moment pairs are derived and the equations of PPF controllers are formulated. The numerical active control system is then achieved. The effect of the parameters - gain and damping ratio - of the PPF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the PPF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies without changing the phase behavior. The increase of the damping ratio of the PPF controller leads to decrease the magnitude of the open loop transfer function and to modify its phase characteristics, ie, system stability. Based on the behavior of the gain and the damping ratio of the controller, PPF controller for reduction of the plate vibration can be achieved. Two PPF controllers are designed with their connection in parallel to control the two modes simultaneously. Each PPF controller is tuned at the $1^{st}$ and $2^{nd}$ modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the tuned modes can be obtained.