• Title/Summary/Keyword: 동탄

Search Result 295, Processing Time 0.036 seconds

Properties of Cementless Loess Mortar Using Eco-Friendly Hardening Agent (친환경 무기질 고화재를 사용한 무시멘트 황토모르타르의 특성)

  • Jung, Yong-Wook;Kim, Sung-Hyun;Lee, Dong-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.355-365
    • /
    • 2015
  • This study examined the fluidity and strength properties, water resistance, durability, and freeze-thaw of cementless loess mortar using an eco-friendly hardening agent. The experimental result indicates that 28 days compressive and flexural strength of the loess mortar was increased regardless of the weathered granite soil and loess mixture ratio as the replacement ratio of the hardening agent increases. The strengths were significantly increased until 14 days regardless of the hardening agent, while the effect on the strengths increasement was relatively low after 14 days. Thus, the strength development of loess mortar concrete was found to be faster than that of the normal concrete. In addition, when the hardening agent of 10% was used, the average flexural strength was 1.7MPa which is insufficient compared to the 28-day flexural strength of 4.5MPa for the paving concrete. However, the flexural strengths of the loess mortar concrete using the hardening agents of 20% and 30% were 4.0MPa and 5.3MPa, respectively. Thus, the hardening agent need to be at least 20% so that the loess mortar can be used for paving concrete. The experiment for water resistance shows that the repeated absorption and dry reduced mass regardless of the mixing ratio of the loess. The maximum length change also decreased with increasing the substitution rate loess mixture ratio and the hardening agent. The result of the freeze-thaw resistance test indicates that the relative dynamic modulus of elasticity at 300 cycle freeze-thaw with the hardening agents of 20% and 30% were 75% and 79%, relatively. Thus, the hardening agent of at least 20% is required to obtain the relative dynamic modulus of elasticity of 60% for the loess mortar.

An Experimental Study on Resistance of rapid Freezing and Thawing of Chloride-inhibiting Low-Heat Cement (차염성 저발열시멘트의 급속동결융해 저항성에 관한 실험적 연구)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kang, Tae-Sung;Ju, Min-Kwan;Kim, Tae-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.589-592
    • /
    • 2008
  • This study was conducted to assess the durability of Chloride-inhibiting Low-Heat Cement while being subjected to freezing-thawing during winter seasons. Although durability varies slightly depending on the conditions of the jobsite, frost damage to concrete resulting from repeated freezing and thawing over the course of seasonal changes is the leading cause behind lowered concrete durability. in addition, concrete that has been subjected to freezing and thawing during the winter season develops a significant amount of expansive force at the core and begins to exhibit signs of damage, such as cracking, peeling, and detachment from the aggregate. Therefore, this study fabricated test specimens using a Chloride-inhibiting Low-Heat Cement(CLC) and the widely used blast furnace slag cement(BFS) and Ordinary Portland Cement(OPC) with water-to-cement ratios of 35%, 40% and 45%, respectively, to assess the durability index of the CLC as per resistance to freezing-thawing. The specimens were then tested using the KS F 2456 method (Testing method for resistance of concrete to rapid freezing and thawing) to measure the dynamic modulus of elasticity. The dynamic modulus of elasticity measurements were then used to derive the durability indices. By comparing the durability indices, it was confirmed that CLC, BFS, and OPC all had superior durability.

  • PDF

Experimental Study on Properties of Permeable Polymer Concrete with Blast Furnace Slag and Fly Ash (고로 슬래그와 플라이 애시를 혼입(混入)한 투수성(透水性) 폴리머 콘크리트의 특성(特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Sung, Chan Yong;Kim, In Su;Jo, Il Ho;Youn, Joon No;Kim, Young Ik;Seo, Dae Seuk
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.2
    • /
    • pp.49-55
    • /
    • 1999
  • This study is performed to evaluate the properties of permeable polymer concrete with blast furnace slag and fly ash. The following conclusions are drawn: 1. The highest strength is achieved by 50% filled blast furnace slag powder and fly ash permeable polymer concrete, it is increased 36% by compressive strength and 217% by bending strength than that of the normal cement concrete, respectively. 2. The static modulus of elasticity is in the range of $100{\times}10^3{\sim}130{\times}10^3kgf/cm^2$, which is approximately 43~51% of that of the normal cement concrete. 3. The dynamic modulus of elasticity is in the range of $102{\times}10^3{\sim}130{\times}10^3kgf/cm^2$, which is approximately less compared to that of the normal cement concrete. The highest dynamic modulus is showed by 50% filled blast furnace slag powder and fly ash permeable polymer concrete. The dynamic modulus of elasticity are increased approximately 0~4% than that of the static modulus. 4. The water permeability is in the range of $4.612{\sim}5.913l/cm^2/h$, and it is largely dependent upon the mix design.

  • PDF

Physical and Mechanical Properties of Polymer Concrete Using Recycled Aggregate (재생골재를 사용한 폴리머 콘크리트의 물리·역학적 특성)

  • Sung, Chan-Yong;Baek, Seung-Chul
    • Korean Journal of Agricultural Science
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • This study was performed to evaluate the physical and mechanical properties of polymer concrete using unsaturated polyester resin, initiator, heavy calcium carbonate, crushed gravel, recycled coarse aggregate, silica sand and recycled fine aggregate. The unit weight, compressive strength, flexural strength and dynamic modulus of elasticity were decreased with increasing the content of recycled aggregate. The unit weight, compressive strength, flexural strength and dynamic modulus of elasticity were showed in $2,127{\sim}2,239kg/m^3$, 80.5~88.3MPa, 19.2~21.5MPa and $254{\times}10^2{\sim}288{\times}10^2MPa$ at the curing age 7 days, respectively. Therefore, these recycled aggregate can be used for polymer concrete.

  • PDF

Considering combined operation method with the wide area rapid-transit and high speed-transit for wide area traffic service offer at high speed track section (고속선구에 광역교통서비스 제공을 위한 고속철도와 급행전철 혼용운용 고찰)

  • Roh, Byoung-Kuk;Kim, Young-Bea;Cha, Ki-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1900-1906
    • /
    • 2008
  • According as zone of life of big city is expanded by new city development etc.., need special skill master plan compensation which can be systematic for wide area traffic problem solution and confusion expense minimization in the metropolitan area because wide area of capital region traffic is gone continuously and continues. Accordingly, Kyonggi Province suggested rapid-transit railway achievement that can connect Seoul Gangnam in 20 minutes with Dongtan new city recently. MLTM(Ministry of Land Transport and Maritime Affaris) announced "Capital region railway network improvement plan research services (2007.12)" result that Gangnam High-speed railway route (Suse $\sim$ Dongtan $\sim$ Pyeongtaek) construction for offer High-speed railway service to capital region and Kyonggi southern part area inhabitantses and need to line capacity tribe solution by Seoul-Busan high-speed railway second-stage and Honam high speed railroad completion. Is judged that need examination about wide area rapid-transit railway combined application operation that take advantage of rail track reserve capacity of High-speed railway for utilization efficiency elevation of country and efficient investment of national finance according as High-speed railway and Gangnam rapid-transit railway route that is suggested in Kyonggi Province are overlaped. Therefore, in this research, I wish to quote investment efficiency plan of railroad business by that different kind's train is run in uniformity track by presenting combined application operation plan and working expenses curtailment effect etc. that is optimized through analysis of roadbed and E & M technology condition, intermediate station plan, train operation planning etc. in case of wide area rapid-transit railway and high-speed railway run combined application.

  • PDF

Numerical Analysis on the Signal Characteristics for Scattered Far-field of Ultrasonic SH-Wave by the Internal Cavity (재료내 기공결함에 의한 SH형 초음파 원거리 산란장의 신호특성에 대한 수치해석)

  • Lee, Jun-Hyeon;Lee, Seo-Il;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.163-172
    • /
    • 2000
  • In this study, the scattered far-field due to a cavity embedded in infinite media subjected to the incident SH-wave was calculated by the boundary element method. The effects of cavity shape and distance between internal cavity and internal point in infinite media were considered. The scattered far-field of the frequency domain was transformed into the signal of the time domain by using the Inverse Fast Fourier Transform(IFFT). It was found that the amplitude of scattered signal in time domain decreased with the increase of the distance between the detecting points of ultrasonic scattered field and the center of internal cavity in media. In addition, the time delay was clearly found in time domain waveform as the distance between the detecting points of ultrasonic scattered field and the center of internal cavity was gradually increased.

Effect of Temperature and Aging on the Relationship between Dynamic and Static Elastic Modulus of Concrete (온도와 재령이 콘크리트의 동탄성계수와 정탄성계수의 상관관계에 미치는 영향)

  • 한상훈;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.445-450
    • /
    • 2001
  • The paper investigates the relationships between dynamic elastic modulus and static elastic modulus or compressive strength according to curing temperature, aging, and cement type. Based on this investigation, the new model equations are proposed. Impact echo method estimates the resonant frequency of specimens and uniaxial compression test measures the static elastic modulus and compressive strength. Type I and V cement concretes, which have the water-cement ratios of 0.40 and 0.50, are cured under the isothermal curing temperature of 10, 23, and 50 $^{\circ}C$. Cement type and aging have no large influence on the relationship between dynamic and static elastic modulus, but the ratio of dynamic and static elastic modulus comes close to 1 as temperature increases. Initial chord elastic modulus, which is calculated at lower strain level of stress-strain curve, has the similar value to dynamic elastic modulus. The relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus. The proposed relationship equations between dynamic elastic modulus and static elastic modulus or compressive strength properly estimates the variation of relationships according to cement type, temperature, and aging.

  • PDF

Dynamic Modeling and Analysis of Flexible Mechanism With Joint Clearance (유연한 기구의 틈새관절 모델링 및 해석방법에 관한 연구)

  • 홍지수;김호룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3109-3117
    • /
    • 1994
  • To operate a flexible mechanism in high speed its weight must be reduced as far as the structural strength does not decrease too much, but a light-weighted mechanism causes undesirable elastodynamic responses deteriorating the system performance. Besides, clearance within the connections of mechanisms causes rapid wear, increased noise and vibration. Even if the problems described above must be considered in the initial design stage, there has been no effective design process which takes account of the correlation between dynamic characteristics of flexible mechanism and the clearance effect at the joint. In this study, the generalized elastodynamic governing equations which include dynamic characteristics and boundary conditions of flexible mechanism are derived by variational calculus and solved by using FFM theory. To take the clearance effect at joint into account a new dynamic model is presented and also the method of modified stiffness/damping matrix is proposed to activate the dynamic clearance model, which cooperates with the developed governing equation very easily. As the results of this study, the proposed method(modified stiffness/damping matrix) to calculate clearance effect was proved to be superior to the existing one(force reaction method) in solution convergency and calculation performance. Besides this method can be easily adopted to the complex shape joint without calculation of reaction force direction.

The impact analysis of interface crack in dissimilar materials using the 2-D laplace transformed BEM (2차원 Laplace 변환 경계요소법에 의한 이종재료 접합면 균열의 충격해석)

  • 김태규;조상봉;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1158-1168
    • /
    • 1994
  • For BEM analyses of the impact problems of dissimilar materials, the connected multi-region method using perfect bonded conditions on the interface boundaries was added to two-dimensional Laplace transformed-domain BEM program for a single region analysis. It was confirmed that the BEM results of impact problems of a single-region and multi-regions for a homogeneous isotropic material are agreed well. The two-dimensional Laplace transformed-domain BEM program combined with connected multi-region method was applied to analyse several impact problems of dissimilar materials. Also the feasibility of BEM impact analyses was investigated for dissimilar materials by the analysis of the BEM results for impact problems of dissimilar materials in terms of physical aspects. As for an application, the two-dimensional Laplace transformed BEM concerning impact problems of cracks at the interface of dissimilar materials and the determinating process of the dynamic stress intensity factors by extrapolation method are presented in this paper.

Freeze-thaw of Durability for Premixed Fly Ash Concrete (프리믹스 플라이애시 콘크리트 동결-융해 특성)

  • Hong, Seung-Ho;Han, Seung-Hwan;Lee, Byung-Duk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.261-262
    • /
    • 2009
  • The prevent methods of Alkali-Silica Reaction (ASR) are studying after the failure cases by ASR were reported in Korea. In this study, the freeze-thaw test and scaling test for premixed fly ash cement were performed. The ratio of fly ash and cement is 20 percent and 80 percent by weight of total cementious material. The results show that the dynamic modulus after 300 cycles the freeze-thaw test for most of specimen except the specimen have less 3% air was more than 90 % and the loss of weigh the specimen after 50 cycles scaling test was less than 1kg/$m^3$.

  • PDF