• Title/Summary/Keyword: 동적 파괴거동

Search Result 116, Processing Time 0.024 seconds

Comparisons on the Interface Shear Strength of Geosynthetics Evaluated by Using Various Kinds of Testing Methods (다양한 시험법에 의해 산정된 토목섬유 사이의 접촉면 전단강도 비교)

  • Seo, Min-Woo;Oh, Myoung-Hak;Yoon, Hyun-Suk;Park, Jun-Boum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.73-80
    • /
    • 2006
  • The shear behavior of four different interfaces consisting of four types of geosynthetics was investigated, and both static and dynamic test for the geosynthetic interfaces were conducted. The monotonic shear experiments were performed by using an inclined board apparatus and large direct shear device. The interface shear strength obtained from the inclined board test was compared with calculated values from large direct shear tests. The comparison results indicated that direct shear tests show high possibility to over-predict the shear strength in the low normal stress range where direct shear tests are not performed. Curved failure envelopes were also obtained for interface cases where two static shear tests were conducted. By comparing the friction angles measured from three tests, i.e. direct shear, inclined board, and shaking table test, it was found that the friction angle might be different depending on the test method and normal stresses applied in the research. Therefore, it was concluded that the testing method should be determined carefully by considering the type of loads and the normal stress expected in the field with using the geosynthetic materials installed in the site.

Regular Waves-induced Seabed Dynamic Responses around Submerged Breakwater (규칙파동장하 잠제 주변지반의 동적거동에 관한 수치해석)

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.3
    • /
    • pp.132-145
    • /
    • 2016
  • In case of the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure will be generated significantly due to pore volume change associated with rearrangement soil grains. This effect will lead a seabed liquefaction around and under structures as a result from decrease in the effective stress. Under the seabed liquefaction occurred and developed, the possibility of structure failure will be increased eventually. In this study, to evaluate the liquefaction potential on the seabed quantitatively, numerical analysis was conducted using the expanded 2-dimensional numerical wave tank model and the finite element elasto-plastic model. Under the condition of the regular wave field, the time and spatial series of the deformation of submerged breakwater, the pore water pressure (oscillatory and residual components) and pore water pressure ratio in the seabed were estimated.

Analytical Study on the Seismic Retrofit Method of Irregular Piloti Building Using Knee-Brace (Knee - Brace를 활용한 비정형 필로티 건물의 내진보강방안에 대한 해석적 연구)

  • Yoo, Suk-Hyung;Kim, Dal-Gee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Torsional behavior due to the plane irregularities of the piloti building can cause excessive story drift in the torsionally outermost column, which can lead to shear failure of the column. As a seismic retrofit method that can control the torsional behavior of the piloti building, the expansion of RC wall, steel frame or steel brace may be used, but such methods may hinder the openness of the piloti floor. Therefore, in this study, linear dynamic analysis and nonlinear static analysis for piloti buildings retrofitted by knee brace were performed, and seismic performance evaluation and torsion control effect of knee brace were analyzed. The results showed that the shear force of the column increased when the piloti building retrofitted by knee brace, but it was effective in controlling the torsional deformation. In case of retrofit between knee brace and column by 30°, the shear force of the column increased less than that of 60°, and the lateral displacement of column was decreased in the order of □, ◯ and H in cross-section.

Numerical Simulation on Seabed-Structure Dynamic Responses due to the Interaction between Waves, Seabed and Coastal Structure (파랑-지반-해안구조물의 상호작용에 기인하는 해저지반과 구조물의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.49-64
    • /
    • 2014
  • Seabed beneath and near the coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If the liquefaction occurs in the seabed, the structure may sink, overturn, and eventually fail. Especially, the seabed liquefaction behavior beneath a gravity-based structure under wave loading should be evaluated and considered for design purpose. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using 2-dimensional numerical wave tank. The 2-dimensional numerical wave tank was expanded to account for irregular wave fields, and to calculate the dynamic wave pressure and water particle velocity acting on the seabed and the surface boundary of the structure. The simulation results of the wave pressure and the shear stress induced by water particle velocity were used as inputs to a FLIP(Finite element analysis LIquefaction Program). Then, the FLIP evaluated the time and spatial variations in excess pore water pressure, effective stress and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the analysis, when the shear stress was considered, the liquefaction at the seabed in front of the structure was identified. Since the liquefied seabed particles have no resistance force, scour can possibly occur on the seabed. Therefore, the strength decrease of the seabed at the front of the structure due to high wave loading for the longer period of time such as a storm can increase the structural motion and consequently influence the stability of the structure.

Seismic Behavior and Estimation for Base Isolator Bearings with Self-centering and Reinforcing Systems (자동복원 및 보강 시스템과 결합된 면진받침의 지진거동과 평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1025-1037
    • /
    • 2015
  • Flexible base isolation bearings that separate superstructure from ground have been widely used in the construction field because they make a significant contribution to increasing the fundamental period of the structure, thereby decreasing response acceleration transmitted into the superstructure. However, the established bearing devices installed to uphold the whole building give rise to some problems involved with failure and collapse due to lack of the capacity as modern structures are getting more massive and higher. Therefore, this study suggests new isolation bearings assembled with additional restrainers enabled to reinforcing and recentering, and then evaluates their performance to withstand the seismic load. The superelastic shape memory alloy (SMA) bars are installed into the conventional lead-rubber bearing (LRB) devices in order to provide recentering forces. These new systems are modeled as component spring models for the purpose of conducting nonlinear dynamic analyses with near fault ground motion data. The LRB devices with steel bars are also designed and analyzed to compare their responses with those of new systems. After numerical analyses, ultimate strength, maximum displacement, permanent deformation, and recentering ratio are compared to each model with an aim to investigate which base isolation models are superior. It can be shown that LRB models with superelastic SMA bars are superior to other models compared to each other in terms of seismic resistance and recentering effect.

Development of Intelligent Multiple Camera System for High-Speed Impact Experiment (고속충돌 시험용 지능형 다중 카메라 시스템 개발)

  • Chung, Dong Teak;Park, Chi Young;Jin, Doo Han;Kim, Tae Yeon;Lee, Joo Yeon;Rhee, Ihnseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1093-1098
    • /
    • 2013
  • A single-crystal sapphire is used as a transparent bulletproof window material; however, few studies have investigated the dynamic behavior and fracture properties under high-speed impact. High-speed and high-resolution sequential images are required to study the interaction of the bullet with the brittle ceramic materials. In this study, a device is developed to capture the sequence of high-speed impact/penetration phenomena. This system consists of a speed measurement device, a microprocessor-based camera controller, and multiple CCD cameras. By using a linear array sensor, the speed-measuring device can measure a small (diameter: up to 1 2 mm) and fast (speed: up to Mach 3) bullet. Once a bullet is launched, it passes through the speed measurement device where its time and speed is recorded, and then, the camera controller computes the exact time of arrival to the target during flight. Then, it sends the trigger signal to the cameras and flashes with a specific delay to capture the impact images sequentially. It is almost impossible to capture high-speed images without the estimation of the time of arrival. We were able to capture high-speed images using the new system with precise accuracy.