• Title/Summary/Keyword: 동적 접촉

Search Result 281, Processing Time 0.025 seconds

Dynamic Simulation of Roller-type Pot Seeding Machine for Onion (롤러식 양파 파종기의 동적 시뮬레이션)

  • Hwang, Seok Joon;Kang, Hyo Seok;Oh, Ah yong;Nam, Ju Seok
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.12-12
    • /
    • 2017
  • 본 연구에서는 롤러식 양파 파종기의 작동 특성 파악을 위한 동적 시뮬레이션을 수행하였다. 롤러식 양파 파종기의 주요부는 롤러와 포트트레이로 구성된다. 양파 파종기의 작동 특성 파악을 위해 동력전달 경로의 구성요소와 각 주요부의 속도를 분석한 결과 동력원인 모터의 출력은 체인과 스프라켓을 통해 포트트레이와 롤러에 전달되며 모터에서의 회전속도는 1770rpm으로 감속기를 통해 출력축의 회전속도는 17.7rpm으로 감소한다. 이론적으로 도출한 포트트레이의 이동속도는 74.98mm/s, 롤러의 회전속도는 22.13rpm으로 나타났다. 시뮬레이션을 수행하기 위해 스캐너를 이용하여 롤러식 파종기를 실측했으며 후에 3D모델링을 진행하였다. 시뮬레이션 해석조건은 파종기의 실제 작동방식을 고려하여 롤러1과 3은 포트트레이와 면대면 접촉을 통해 회전하도록 설정하였고 롤러2와 롤러4는 동력전달경로에 포함된 스프라켓과 기어의 잇수비를 반영하여 회전속도를 도출하여 적용하였다. 시뮬레이션 결과 롤러의 회전속도는 모두 22.13rpm으로 수식에 근거하여 도출한 값과 계측 값이 같음을 확인하였다. 또한 파종 깊이를 결정하는 요소인 롤러의 상토 압축 정도를 파악하기 위하여 롤러궤적 시뮬레이션을 통해 롤러 끝 단의 궤적을 분석하였는데 롤러궤적 분석 결과 롤러의 끝 단은 약 9.8mm 깊이로 내려가는 것을 확인하였다.

  • PDF

Dynamic Characteristics of Decomposed Granite Soils by Changing Geoenvironment (지반환경 변화에 따른 화강토의 동적특성)

  • Lee, Jin-Soo;Lee, Kang-Il;Kim, Kyung-Jin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.41-52
    • /
    • 2014
  • Decomposed granite soil is likely to lose its strength when exposed to air or water. Such a geomaterial is weathered by wetting-drying or freezing-melting. In this study, resonant column tests were conducted to figure out the dynamic characteristics of granite soil that has affected by environmental changes like weathering condition. The results show that wetting-drying weathering condition is the most affective parameter on the dynamic characteristics of granite soil. In the meantime, artificial weathering conditions such as freezing-melting has less affection at first and getting increase as the process repeats constantly.

Infrared Thermographic Diagnosis Mechanism for Fault Detection of Ball Bearing under Dynamic Loading Conditions (동적 하중조건에서 볼 베어링의 고장 탐지에 대한 적외선 열화상 진단메커니즘 고찰)

  • Seo, Jin-Ju;Yoon, Han-Vit;Kim, Dong-Yeon;Hong, Dong-Pyo;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.134-138
    • /
    • 2011
  • Fault detection for dynamic loading conditions of rotational machineries was considered from the contactless, non-destructive infrared thermographic method, rather than the traditional diagnosis method. In this paper, by applying a rotating deep-grooved ball bearing, passive thermographic experiment was performed as an alternative way proceeding the traditional fault monitoring. In addition, the thermographic experiments were compared with the vibration spectrum analysis to evaluate the efficiency of the proposed method. Based on the results, it was concluded the temperature characteristics of the ball bearing under dynamic loading conditions were analyzed thoroughly.

Stiffness and Natural Frequency of Stone Masonry pagoda (석탑문화재의 강성과 고유진동수에 관한 연구)

  • Lee, Sung-Min;Son, Ho-Woong;Lee, Soo-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.263-270
    • /
    • 2004
  • The dynamic behavior of multi-layered stone masonry monuments, such as stone pagoda, are mainly influenced by contour condition of contacting surface of stones. These structures can be modeled as a multi-degrees of freedom system. In this case the mass of the system can be easily estimated, mean while the estimation of stiffness at junction is not simple. In this paper a method for estimating the spring constant at the contacting surface of stone is proposed. The proposed method utilizes the natural frequency of the system which can be obtained by eigenvalue analysis.

Dynamic Shear Modulus of Crushable Sand (잘 부서지는 모래의 동적전단탄성계수)

  • 윤여원
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.67-80
    • /
    • 1992
  • In the analysis of dynamic problem, determination of mazimun shear modulus is essential for the estimation of shear stress at any strain level. Although many models for silica sands were presented, the direct accomodation of those models to crushable sand would be difficult because of crushability during torsion. In this research dynamic behaviour of tested sand is presented. The shear modulus of loose crushable sand shows similar results to silica sand. However, as the density of crushable sand increases the shear modulus decreases because of crushability by increasing surface contact area. And modulus number is expressed in terms of state parameter by Been and Jefferies (1965).

  • PDF

Numerical Simulation of a Gun-launched Projectile Considering Rifled-gun Tube (포신의 강선을 고려한 포 발사 해석)

  • Joo, Geunsu;Huh, Hoon;Jung, Yeong Hyuk;Kim, Ju Yeong;Seo, Songwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.877-885
    • /
    • 2017
  • This paper is concerned with numerical simulation of a gun-launched projectile considering a rifled gun-tube. Gun-launched conditions induce dynamic behaviors, such as high pressure and high speed rotation. A projectile and its internal electronic components may be damaged in such harsh environments. Hence, it is necessary to perform numerical simulation of a gun-launched projectile to predict its dynamic behaviors and stability. In this work, preceding research studies on gun-launched projectiles are investigated, and the simulation method is developed to rotate the projectile through between its rotating band and a rifled-gun tube. The proposed method is verified by comparison with experimental results, and the dynamic behaviors and stability of the projectile are evaluated under gun-launched conditions.

A Study of Dynamic Behavior of Track and Train Interaction on Rail Open Gap (레일 개구부에서의 궤도-차량 상호작용에 대한 연구)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu;Cho, Sun Kyu;Han, Sang Yun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.345-355
    • /
    • 2007
  • During winter, the CWR (continuous welded rail) may be broken when a temperature drop below the neutral level changes the axial force, causing tensile fracture and creating a rail gap. The passage of a train on a rail with an open gap may lead to very costly derailments. In this paper, the use of a track-and-train-coupled model whose rail has an open gap is proposed for dynamic interaction analysis. Linear track and train systems were coupled in this study by a nonlinear Herzian contact spring, and the complete system matrices of the total track-train system were constructed. Moreover, the interaction phenomenon considering the presence of an open gap in the rail was toughly defined by assigning the irregularity functions between the two sides of the gap. Time history analysis, which has an iteration scheme such as the Newmark-$\beta$ method (based on the Modified Newton-Raphson methods), was conducted to solve the nonlinear equation. .Finally, numerical studies were conducted to assess the effect of the various parameters of the system when applied to various speeds, open-gap sizes, and support stiffnesses of the rail.

Interfacial Evaluation and Hydrophobicity of Multifunctional Hybrid Nanocomposites for Self-sensing and Actuation (자체 감지능 및 작동기용 다기능 하이브리드 나노복합재료의 계면 특성 및 소수성 표면 연구)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Jang, Jung-Hoon;Kim, Myung-Soo;Park, Joung-Man
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.24-30
    • /
    • 2010
  • Interfacial evaluation and hydrophobicity of Ni-nanopowder/epoxy composites were investigated for self-sensing and actuation. Contact resistance and resistivity were measured using gradient micro-specimens. The actuation of the composites in the electromagnetic field was studied with three wave functions, i.e., sine, triangle and square functions. Due tothe presence of hydrophobic domains on the heterogeneous surface, the static contact angle of Ni-nanopowder/epoxy nanocomposite wasabout $100^{\circ}$, which was rather lower than that for super-hydrophobicity. The dynamic contact angle showed the similar trend of static contact angle. Ni-nanopowder/epoxy composite was responded wellfor both self-sensing and actuation in electromagnetic field due to the intrinsic metal property of Ni-nanopowder. Displacement of the actuator of Ni-nanopowder/epoxy composite was evaluated to obtain the maximum and the optimum performance using laser displacement sensor as functions of the wave type, frequency, and voltage. Actuation of Ni-nanopowder/epoxy composites also increased as functions of applied frequency and voltage. Actuated strain increased more rapidly at sine wave with increasing voltage compared to those of triangle or rectangular waves.

Development of Force Sensor to Measure Contact Force of Pantograph for High-Speed Train (고속철도용 판토그라프 접촉력 측정을 위한 스트레인 게이지 내장형 하중센서 개발)

  • Park, Chan-Kyoung;Kim, Young-Guk;Cho, Yong-Hyeon;Paik, Jin-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.488-492
    • /
    • 2010
  • In order to verify the performance of high-speed train and core equipments such as current collection system, sophisticated tests and evaluating procedures must be considered. In case of force sensor to test contact force of pantograph, it should customize the test instruments according to characteristics of pantograph. In this paper, the force sensor with a built-in strain-gauge which developed to improve measuring performance of contact force between the pantograph and catenary system is introduced. The test and evaluation results of force sensor's static and dynamic calibration with pantograph shows that its design is very suitable and applicable for on-line test. Henceforth, the force sensor will be applied to test interaction characteristics between the pantograph and catenary system on the high-speed line and expected by a part of measuring system for evaluating current collecting characteristics more reliably.

A Study on the Stress Wave Propagation of Composite Laminate Subjected to Low-Velocity Impact (저속 충격을 받는 적층 복합재의 응력파 전파에 관한 연구)

  • 안국찬;김문생;김규남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 1989
  • The impact stress and wave propagation of graphite/epoxy and glass/epoxy laminates subjected to the transverse low-velocity impact of steel balls are investigated theoretically. A plate finite element model based on Whitney and Pagano's theory for the analysis of heterogeneous and anisotropic plates taking into account of the transverse shear deformation is used for the theoretical investigation. This model is in conjuction with static contact laws. The basic element is a four-node quadrilateral with the five degrees-of-freedom per node. The reduced integration technique is used for shear locking associated with low-order function in application to thin plates. These two materials are composed of [0.deg./45.deg./0.deg./-45.deg./0.deg.]$_{2S}$ and [90.deg./45.deg./90.deg./-45.deg./90.deg.]$_{2S}$ stacking sequences and have clamped-clamped boundary conditions. Finally, the present results are compared with an existing solution and wave propagation theory and then impact stress and wave propagation phenomena are investigated.gated.