• Title/Summary/Keyword: 동적 접촉면 전단 시험기

Search Result 6, Processing Time 0.023 seconds

Dynamic Shear Behaviors on the Normally Consolidation Clay-Geosynthetic Interface (토목섬유-정규압밀점토의 접촉면 동적 전단거동 평가)

  • Bae, Hyogon;Jang, Dongin;Kwak, Changwon;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.33-39
    • /
    • 2018
  • In this study, important characteristics were identified for the Geosynthetic-soil interface using overburden pressure and saltwater and fresh water to evaluate silt shear behavior of the Geosynthetic-soil interface. In addition, waste landfill can secure spaces for waste disposal in the sea and this spaces can be used for additional facilities which will be necessary in the future. Analysis of behavior characteristics on interface of Geosynthetic-soil shows that, if analyzed using standard consolidometers, the consolidation stress of fresh water increased significantly more than saltwater. When analyzed using cyclic shear apparatus, saltwater and freshwater in both conditions, the displacement value increases as the wire gauges become closer to the lower module, and the shear fracture tends to occur radically under saltwater conditions than fresh water. Therefore, seawater, fresh water that act on the interface of geosynthetic-soil, and installation of facility using geosynthetic should be considered as important parameters that are essential for the dynamic design factor of the water controlling facility.

The Characteristics of Dynamic Behaviors for Geosynthetic-soil Interface Considering Chemical Influence Factors (화학적 영향인자를 고려한 토목섬유-흙 접촉면 동적거동 특성)

  • Park, Innjoon;Kwak, Changwon;Kim, Jaekeun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.47-54
    • /
    • 2010
  • Nowadays, geosynthetics for reinforcement and protection are widely applied to the waste landfill site. Current research indicates the potential for progressive failure in geosynthetic-soil system depends on the interface shear strength governed by several intrinsic factors such as moisture, normal stress, chemical, etc. In particular, the effect of the acidity and basicity from the leachate is intensively reviewed to assess the chemical reaction mechanism of interface shear strength under the cyclic loading condition. New multi-purpose interface apparatus(M-PIA) has been manufactured and the cyclic direct shear tests using submerged geosynthetics and soils under the different chemical conditions have been performed, consequently, the thickness of interface and shear stress degradation are verified. The basic schematic of the Disturbed State Concept(DSC) is employed to estimate the shear stress degradation in the interface, then, normalized disturbed function is obtained and analyzed to describe the shear stress degradation of geosynthetic-soil interface with chemical influence factors under dynamic condition.

Dynamic Relative Displacement of Geosynthetic-Soil Interface Considering Chemical Effect (화학적 영향을 고려한 토목섬유-지반 접촉면의 동적상대변위)

  • Kwak, Chang-Won;Oh, Myoung-Hak;Jang, Dong-In;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.73-81
    • /
    • 2016
  • Recently, the construction of onshore waste landfill sites has been studied due to the increase of waste and geosynthetics are widely utilized to enforce and protect waste landfill. Geosynthetics comprises the interface with soil and the seismic behavior and stability mostly depend on the dynamic shear behavior of the geosynthetic-soil interface. Therefore, the understanding of dynamic shear behavior and dynamic relative displacement of the interface is critical. The dynamic shear behavior of the interface is affected by surrounding conditions and loading and shows very complicated response, and, it is difficult to study theoretically. In this study, laboratory test to investigate dynamic relative displacement is performed under chemical condition. Dynamic interface apparatus is utilized and cyclic simple shear tests are conducted under short term (60 days of submerging period) and long term (840 days of submerging period) conditions. Consequently, relative displacement of the interface shows the largest values under acid condition, which means more severe damage of the interface.

Dynamic shear behavior of geosynthetic-soil interface considering thermalchemical factors (열-화학적 인자를 고려한 복층터널의 지반-토목섬유의 접촉면 전단거동)

  • Jang, Dong-In;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.213-220
    • /
    • 2016
  • The needs for the utilization of space in the urban ara due to the increasing population and traffic volume. A Double-deck tunnel can be an appropriate solution. Geosynthetics are inevitably installed between ground and tunnel lining, therefore, geosynthetic-soil interface is also comprises. Dynamic shear behavior of geosynthetic-soil interface affects the dynamic behavior of tunnel, and experimental study is required since the behavior is very complicated. In this study, chemical factors such as acid and basic element in the groundwater and temperature are considered in the laboratory test. Multi-purpose Interface Apparatus(M-PIA) is utilized and submerging periods are 60 and 960 days. Consequently, dynamic shear degradation of geosynthetic-soil interface considering chemical and thermal factors are verified.

Dynamic Shear Behavior of the Ground-geosynthetics Interface in the Waste Landfill (폐기물 매립장 지반-토목섬유 접촉면의 동적 전단거동 특성)

  • Jang, Dong-In;Kim, Young-Jun;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.5-12
    • /
    • 2015
  • The construction of waste landfill sites has been increased due to recent expansion of various waste. Geotextiles are widely used for the purpose of reinforcement and protection of waste inside the landfill. Geotextile affects the shear behavior of waste landfill which forms the contact surface with soil. In this study, the effect of acidic and alkaline components in leachate has been analyzed through the laboratory experiment on the shear stress reduction of the contact surface of ground-geotextile under the cyclic load. For this purpose, a dynamic contact surface shear tester has been manufactured, and cyclic simple shear tests have been performed using geotextile and soil specimen which were immersed in chemical solutions for 60 and 840 days, respectively. Based on the Disturbed State Concept, the characteristics of shear stress on the contact surface of ground-geotextile due to chemical factors have been identified by the disturbance function.

Probabilistic Characteristics Analysis of Disturbed Function for Geosynthetic-Soil Interface Using Cyclic Shear Tests (동적전단시험을 이용한 토목섬유-흙 접촉면에 대한 교란도함수의 확률특성 분석)

  • Huh, Jungwon;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.81-91
    • /
    • 2012
  • This paper mainly deals with the analysis of probabilistic characteristics of the disturbed function proposed to predict dynamic behavior of Geosynthetic-soil interface as the lining and cover systems used in waste landfills. Calibration and statistical property estimation of the parameters in the disturbed function model were first performed using many experimental data obtained from a new multi-purpose interface apparatus (M-PIA). In order to analyze the effect due to changes in chemical degradation and normal loads condition, probabilistic properties such as mean, coefficient of variation and distribution type of the disturbed function were evaluated using both the LHS method known to be a very efficient sampling scheme and the estimated statistical property of A and Z. As a result, variation of the disturbed function is found to range approximately from 10~28% according to the level of ${\xi}_D$ and Weibull appears to be the most adequate distribution type at almost all levels of ${\xi}_D$. It is concluded that a probabilistic safety assessment method for Geosynthetic-soil interface considering uncertainty in shear strength can be developed by utilizing probabilistic properties of the disturbed function obtained in this study.