• Title/Summary/Keyword: 동적 접촉력

Search Result 64, Processing Time 0.026 seconds

Calculation of the Dynamic Contact Force between a Shipbuilding Block and Wire Ropes of a Goliath Crane for the Optimal Lug Arrangement (최적 러그 배치를 위한 골리앗 크레인의 와이어 로프와 선체 블록간의 동적 접촉력 계산)

  • Ku, Nam-Kug;Roh, Myung-Il;Cha, Ju-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.375-380
    • /
    • 2012
  • In this study, dynamic load and dynamic contact force between a building block and wire ropes of a goliath crane are calculated during lifting or turn-over of a building block for the design of an optimal lug arrangement system. In addition, a multibody dynamics kernel for implementing the system were developed. In the multibody dynamics kernel, the equations of motion are constructed using recursive formulation. To evaluate the applicability of the developed kernels, the interferences and dynamic contact force between the building block and wire ropes were calculated and then the hull structural analysis for the block was performed using the calculation result.

Calculation of the Dynamic Contact Force between Shipbuilding Block and Wire Rope of a Goliath Crane for Optimal Lug Arrangement (선체 블록 러그 최적 배치를 위한 골리앗 크레인의 와이어로프와 블록 간의 동적 접촉력 계산)

  • Ku, Nam-Kug;Jo, A-Ra;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.714-717
    • /
    • 2011
  • 본 논문에서는 선체 블록의 운반 작업 중 발생하는 동적 하중 및 골리앗 크레인의 와이어로프와 선체블록 간의 동적 접촉력을 고려한 최적 러그 배치 시스템을 설계하고, 다물체계 동역학 커널과 외력 계산커널을 개발하였다. 다물체계 동역학 커널은 recursive formulation을 이용하여 운동 방정식을 구성하고, 외력 계산 커널은 비선형 유체정역학적 힘, 선형 유체동역학적 힘, 풍력, 계류력을 계산할 수 있다. 이를 이용해 블록에 작용하는 와이어로프와 블록 간의 간섭과 동적 접촉력을 계산하고, 그 결과를 이용하여 러그가 부착된 블록의 구조 해석을 수행하였다.

  • PDF

Analysis of the Current Collection Quality for Next Generation High-Speed Trains with Measurements of the Dynamic Contact Force (동적 접촉력 측정을 통한 차세대 고속열차의 집전성능 분석)

  • Oh, Hyuck Keun;Ji, Hyung Min;Kim, Young Guk;Kim, Seogwon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.157-164
    • /
    • 2014
  • The contact force between the pantograph and the catenary is a key factor determining the current collection quality, as they can ensure stable electrical power to the train. In this study, we analyzed the dynamic contact force for HEMU-430X depending on the train speed. It was confirmed through the results that the standard deviation of the contact force increases with an increase in the train speed. It was also verified that the span of the catenary system is a very important factor with regard to the contact force when analyzed with frequency analysis. To secure stable power in speed that exceeds 400km/h, the statistical variation of the contact force should be minimized. To realize this, the catenary tension was increased and the mass of the pan-head was decreased. The ensuing effects were then quantitatively analyzed in terms of the contact force. In addition, the differences in the contact force between a tunnel and an open field were analyzed based on a frequency analysis.

Optimum Cam Profile Design and Experimental Verification on an OHC Type Cam-valve System (OHC형 캠-밸브 기구의 최적 캠 형상설계 및 실험적 검증)

  • 김성훈;김원경;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2049-2058
    • /
    • 1992
  • In this work, a 6 degree of freedom lumped mass model is constructed for an OHC-type cam valve train analysis, and the model is verified experimentally. Using the verified model, an optimum cam profile is designed to minimize the maximum contact force between cam and follower under the constraints such as cam lift and cam event angle. The designed cam was carefully machined and tested experimentally. As operating the designed cam shaft on the test rig, the valve motion was precisely measured with laser displacement meter and the contact force was indirectly monitored by measuring strain at a certain point of the finger follower. Judging from the model simulation and experiment results, the maximum contact force can be reduced as much as more than 16.7 percent under maintaining the original valve flow area by adopting the optimum cam profile.

Prediction of Optimal Catenary Tension by Dynamic Characteristic Measurement and Dynamic Analysis of Pantograph in High-Speed Train (고속열차 팬터그래프 동특성 측정 및 동역학 해석을 통한 최적 전차선 장력 예측)

  • Oh, Hyuck Keun;Yoo, Geun-Jun;Park, Tae-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.350-356
    • /
    • 2018
  • The contact force, which is the dynamic interaction between the pantograph and the catenary, is an important indicator for evaluating the current collecting quality, which is a stable power supply characteristic to the vehicle. In this study, dynamic contact force characteristics of pantograph of HEMU-430X vehicle, which is a power-distributed high-speed train test vehicle, were analyzed according to the catenary tension and compared with the analytical results using the pantograph-catenary interaction model. As a result of comparing the test results with the analytical results, it was confirmed that the average contact force and the standard deviation of the contact force, which are the main dynamic contact force characteristics, coincide relatively well. Using the analytical model, the relationship between the catenary tension and the contact force is presented according to the vehicle speed, and the optimal catenary tension for each operation speed is presented and compared with the international standard. As a result, it was found that the results obtained from the analysis are comparable to those recommended by international standards.

Dynamic Interaction Analysis of Train-bridge Considering Rail-wheel Contact Mechanism (윤축-레일 접촉메카니즘을 고려한 열차-교량 동적상호작용 해석)

  • Min, Dong-Ju;Kwark, Jong-Won;Kim, Moon-Young
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.363-373
    • /
    • 2015
  • The purpose of this study is to develop a nonlinear algorithm for the dynamic interaction analysis of KTX trains and bridge girders with consideration of separation and flange contact phenomena between wheel and rail. For this, three interaction models between wheel-rail are implemented and compared through numerical examples. That is, the spring model and the non-jump model are briefly explained, and a nonlinear contact model is then proposed to accurately simulate interaction forces of the train-bridge system. Dynamic interaction analysis of a simply supported girder and trains is performed and the analyzed results are presented and compared for the proposed contact model and the other model types. Particularly, flange contact phenomena in the nonlinear contact model are demonstrated under a specific condition.

Dynamic Analysis of Catenary System Subjected to Moving Load (이동하중을 받는 일정장력이 작용하는 가선계의 동적해석)

  • Lee, Kyu-Ho;Cho, Yong-Hyun;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.99-106
    • /
    • 2011
  • In this study, the dynamic contact of a catenary system is analyzed by using the finite element method. We derive the equations of motion for the catenary system by taking into consideration tension on the catenaries. After establishing the weak form, they are spatially discretized with beam elements. Then, we analytically calculated the wave propagation speed for a string, bar, beam, and the catenaries subjected to tension. Further, finite element computer program for contact dynamic analyses is developed. Finally, we analyze the wave propagation response corresponding to the moving load to the contact line are calculated.

Impact Damage Energy of Laminated Beams Subjected to Transverse Impact (횡방향 충격을 받는 적층복합보의 손상에너지에 관한 연구)

  • 박근철;김남식;김문생
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.723-734
    • /
    • 1991
  • 본 연구에서는 투사체의 충격으로 인해 복합재에 발생하는 손상을 해석하기 위해 우선 이와 관련이 있는 손상에너지를 구할 수 있도록 동적 유한요소 프로그램을 개발하는데 있으며, 이렇게 구한 결과들을 Husman의 실험결과와 비교함으로써 본 논문 의 유한요소 프로그램이 적층복합보에 충격으로 인하여 전달되는 총에너지와 손상에너 지를 구하는데 타당한 것인가를 검토하고 이 프로그램을 이용하여 다음과 같은 것들을 해석하였다.

Analysis of Effect of Pantograph Cover on the Current Collection Quality of High Speed Train using Real Train Experiment (실차시험을 통한 팬터그래프 커버가 고속열차의 집전성능에 미치는 영향에 대한 분석)

  • Oh, Hyuck Keun;Kim, Seogwon;Cho, Yong-hyun;Kwak, Minho;Kwon, Sam Young
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.409-416
    • /
    • 2016
  • The contact force characteristic between the pantograph and the catenary wire represents the current collection quality of trains; it should be precisely controlled under international standard. Recently, a noise reduction cover has been installed around the pantograph of high speed trains. However, little study on the contact force by the pantograph cover has been conducted. In this study, the impact on the current collection performance of the pantograph cover was analyzed by dynamic contact force measurement using a next generation high speed train (HEMU-430X). As a result, it was confirmed that the attachment of a pantograph cover could lower the mean contact force by approximately 50N at 300km/h. In addition, the pure difference of the average contact force by the presence of pantograph cover, except for the static pressure, was measured and found to be up to 110N at 300km/h. It was also found that the standard deviation of the contact force of 3~5N could be changed by use of a pantograph cover.

The Effect of Muscular strength, Sensation, and Spasticity of the Hip Joint on Balance in Chronic Stroke Patients (엉덩관절의 근력, 감각과 경직이 만성 뇌졸중 환자의 균형에 미치는 영향)

  • Choi, Yoo-Im;Park, Eun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4008-4014
    • /
    • 2011
  • The purpose of this study was to identify the effect of muscular strength, sensation, and spasticity of the hip joint on balance using clinical tools in chronic stroke patients. Thirty-two subjects participated. It were measured muscular strength of the hip flexor, extensor, abductor, and adductor using manual muscle testing, light touch sensibility, and spasticity of the quadriceps using the modified Ashworth scale in the paretic lower extremity. Also, static and dynamic balance were measured by the functional balance scale. Collected data was analyzed by stepwise multiple regression. Muscular strength of the hip abductor, light touch sensibility, and spasticity were associated with static balance(p<0.05) and explanatory power was 80.5%. Muscular strength of the hip abductor and light touch sensibility were associated with dynamic balance(p<0.05) and explanatory power was 77.9%. Thus, it is suggested that muscular strength of the hip abductor and light touch sensibility is considered when providing evaluation and intervention programs for the future in the balance.