• Title/Summary/Keyword: 동적 원심모형실험

Search Result 46, Processing Time 0.027 seconds

Dynamic p-y Backbone Curves for a Pile in Saturated Sand (포화 사질토 지반에서의 동적 p-y 중추곡선)

  • Yang, Eui-Kyu;Yoo, Min-Taek;Kim, Hyun-Uk;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.27-38
    • /
    • 2009
  • In this study, a series of 1 g shaking table model pile tests were carried out in saturated dense and loose sand to evaluate dynamic p-y curves for various conditions of flexural stiffness of a pile shaft, acceleration frequency and acceleration amplitude for input loads. Dynamic p-y backbone curve which can be applied to pseudo static analysis for saturated dense sand was proposed as a hyperbolic function by connecting the peak points of the experimental p-y curves, which corresponded to maximum soil resistances. In order to represent the backbone curve numerically, empirical equations were developed for the initial stiffness ($k_{ini}$) and the ultimate capacity ($p_u$) of soils as a function of a friction angle and a confining stress. The applicability of a p-y backbone curve was evaluated based on the centrifuge test results of other researchers cited in literature, and this suggested backbone curve was also compared with the currently available p-y curves. And also, the scaling factor ($S_F$) to account for the degradation of soil resistance according to the excess pore pressure was developed from the results of saturated loose sand.

Numerical Simulation of Dynamic Soil-pile Interaction for Dry Condition Observed in Centrifuge Test (원심모형실험에서 관측된 건조 지반-말뚝 동적 상호작용의 수치 모델링)

  • Kown, Sun-Yong;Kim, Seok-Jung;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.5-14
    • /
    • 2016
  • Numerical simulation of dynamic soil-pile-structure interaction embedded in a dry sand was carried out. 3D model of the dynamic centrifuge model tests was formulated in a time domain to consider nonlinear behavior of soil using the finite difference method program, FLAC3D. As a modeling methodology, Mohr-Coulomb criteria was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling (Kim et al., 2012) was used as boundary condition to reduce analysis time. Calibration process for numerical modeling results and test results was performed through the parametric study. Verification process was then performed by comparing numerical modeling results with another test results. Based on the calibration and validation procedure, it is identified that proposed modeling method can properly simulate dynamic behavior of soil-pile system in dry condition.

The Analysis of Single Piles in Weathered Soil with and without Ground Water Table under the Dynamic Condition (지진 시 풍화지반(건조/포화)에 근입된 단말뚝의 동적거동 분석)

  • Song, Su-Min;Park, Jong-Jeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • This study describes the effect of ground water table on the dynamic analysis of single piles subjected to earthquake loading. The dynamic numerical analysis was performed for different dry and saturated soils with varying the relative densities of surrounding weathered soils (SM). The test soil was a weathered soil encountered in the engineering field and bender element tests were conducted to estimate the dynamic properties of test soil. The Mohr-Coulomb model and Finn model were used for soil, dry and saturated conditions, respectively. These models validated with results of centrifuge tests. When compared with the results from the soil conditions, saturated cases showed more lateral displacement and bending moment of piles than dry cases, and this difference caused from the generation of excess porewater pressure. It means that the kinematic effect of the soil decreased as the excess pore water pressure was generated, and it was changed to the inertial behavior of the pile.

Evaluation of Lateral Pile Behavior under Cyclic Loading by Centrifuge Tests (원심모형 실험을 이용한 반복하중을 받는 모노파일 거동 평가)

  • Lee, Myungjae;Yoo, Mintaek;Park, Jeongjun;Min, Kyungchan
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.6
    • /
    • pp.39-48
    • /
    • 2019
  • This study investigated the lateral behavior of monopile embedded in the dry sand through cyclic lateral loading test using a centrifuge test. The sand sample for the experiment was the dry Jumunjin standard sand at 80% relative density and the friction angle of $38^{\circ}$. In the experimental procedure, firstly, it was determined the static lateral bearing capacity by performing the static lateral loading test to decide the cyclic load. This derived static lateral bearing capacity values of 30%, 50%, 80%, 120% were determined as the cyclic lateral load, and the number of cycle was performed 100 times. Through the results, the experiment cyclic p-y curve was calculated, and the cyclic p-y backbone curve by depth was derived using the derived maximum soil resistance point by the load. The initial slope at the same depth was underestimated than API (1987) p-y curves, and the ultimate soil resistance was overestimated than API (1987) p-y curves. In addition, the result of the comparison with the suggested dynamic p-y curve was that the suggested dynamic p-y curve was overestimated than the cyclic p-y backbone curve on the initial slope and soil resistance at the same depth. It is considered that the p-y curve should be applied differently depending on the loading conditions of the pile.

Seismic response characteristics according to the supporting conditions of middle slab of double-deck undersea tunnel using the centrifuge testing (원심모형 실험을 이용한 해저 복층터널 중간슬래브 지지조건에 따른 지진 응답특성)

  • Um, Ki-Yoon;Park, Inn-Joon;Kwak, Chang-Won;Jang, Dong-In
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.347-360
    • /
    • 2018
  • Due to the concentration and congestion of traffic in Seoul metropolitan area, effective utilization of underground space is required, and construction of various underground structures such as a double deck tunnel is increasing. Double deck tunnels are divided into upper and lower runways, and the most important part is middle slab. To investigate seismic behavior of middle slab, experimental study is required because of the complexity of the load and the mechanism of earthquake. In this study, centrifugal model tests were conducted to investigate the response characteristics of earthquake response according to the support conditions of the middle slab of a double deck tunnel. Artificial, Ofunato (short period) and Hachinohe (long period) seismic waves were employed in the experimental study. As a result, it was confirmed that the acceleration attenuation of elastomeric bearings condition was 10.6% in artificial earthquake, 13.6% in Ofunato earthquake, and 10.3% in Hachinohe earthquake. The results indicate that elastomeric bearings have some advantages in the viewpoint of seismic behaviors.

Seismic Behavior of Deterioration Reservoir Embankment Using Dynamic Centrifugal Model Tests (동적원심모형실험에 의한 재개발 저수지의 동적 거동특성)

  • Park, Sung-Yong;Chang, Suk-Hyun;Lim, Hyun-Taek;Kim, Jung-Meyon;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.91-100
    • /
    • 2016
  • Recently, lots of damages have been lost because large magnitude earthquakes were occurred in the world. It has been increased the number of earthquakes in Korea. It needs improvement required for the repair of deteriorated reservoirs, reinforcement and raised reservoir coping with climate change and earthquake. This study aims to investigate the seismic behavior of deterioration reservoir levee using dynamic centrifugal model test. Therefore, two case tests in centrifugal field of 60 g, the result has provided the influence on the acceleration response, displacement, settlement and the pore water pressure of the reservoir with earthquakes. From the results larger displacement and acceleration response at the front side of reservoir embankment with poor-fabricated core in seismic condition may degrade overall stability. Reasonable reinforcement method of the raised reservoir embankment is required for ensuring long-term stability on earthquake.

Numerical Simulation of Dynamic Soil-pile-structure Interaction in Liquefiable Sand (액상화 가능한 지반에 근입된 지반-말뚝-구조물 동적 상호작용의 수치 모델링)

  • Kwon, Sun-Yong;Yoo, Min-Taek;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.29-38
    • /
    • 2018
  • Three-dimensional continuum modeling of dynamic soil-pile-structure interaction embedded in a liquefiable sand was carried out. Finn model which can model liquefaction behavior using effective stress method was adopted to simulate development of pore water pressure according to shear deformation of soil directly in real time. Finn model was incorporated into Non-linear elastic, Mohr-Coulomb plastic model. Calibration of proposed modeling method was performed by comparing the results with those of the centrifuge tests performed by Wilson (1998). Excess pore pressure ratio, pile bending moment, pile head displacement-time history according to depth calculated by numerical analysis agreed reasonably well with the test results. Validation of the proposed modeling method was later performed using another test case, and good agreement between the computed and measured values was observed.

Dynamic Centrifuge Tests for Evaluating the Earthquake Load of the Structure on Various Foundation Types (다양한 기초 형식에 따른 단자유도 구조물 지진하중 평가를 위한 동적 원심모형실험)

  • Ha, Jeong Gon;Jo, Seong Bae;Park, Heon Joon;Kim, Dong Kwan;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.285-293
    • /
    • 2016
  • Soil-foundation-structure interaction (SFSI) is one of the important issues in the seismic design for evaluating the exact behavior of the system. A seismic design of a structure can be more precise and economical, provided that the effect of SFSI is properly taken into account. In this study, a series of the dynamic centrifuge tests were performed to compare the seismic response of the single degree of freedom(SDOF) structure on the various types of the foundation. The shallow and pile foundations were made up of diverse mass and different conjunctive condition, respectively. The test specimen consisted of dry sand deposit, foundation, and SDOF structure in a centrifuge box. Several types of earthquake motions were sequentially applied to the test specimen from weak to strong intensity of them, which is known as a stage test. Results from the centrifuge tests showed that the seismic responses of the SDOF structure on the shallow foundation and disconnected pile foundation decreased by the foundation rocking. On the other hand, those on the connected pile foundation gradually increased with intensity of input motion. The allowable displacement of the foundation under the strong earthquake, the shallow and the disconnected pile foundation, have an advantage in dissipating the earthquake energy for the seismic design.

Effect of Cyclic Soil Model on Seismic Site Response Analysis (지반 동적거동모델에 따른 부지응답해석 영향연구)

  • Lee, Jinsun;Noh, Gyeongdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.23-35
    • /
    • 2015
  • Nonlinear soil behavior before failure under dynamic loading is often implemented in a numerical analysis code by a mathematical fitting function model with Masing's rule. However, the model may show different behavior with an experimental results obtained from laboratory test in damping ratio corresponding secant shear modulus for a certain shear strain rage. The difference may come from an unique soil characteristics which is unable to implement by using the existing mathematical fitting model. As of now, several fitting models have been suggested to overcome the difference between model and real soil behavior but consequence of the difference in dynamic analysis is not reviewed yet. In this paper, the effect of the difference on site response was examined through nonlinear response history analysis. The analysis was verified and calibrated with well defined dynamic geotechnical centrifuge test. Site response analyses were performed with three mathematical fitting function models and compared with the centrifuge test results in prototype scale. The errors on peak ground acceleration between analysis and experiment getting increased as increasing the intensity of the input motion. In practical point of view, the analysis results of accuracy with the fitting model is not significant in low to mid input motion intensity.

Study on Improvement of Response Spectrum Analysis of Pile-supported Structure: Focusing on the Natural Periods and Input Ground Acceleration (잔교식 구조물의 응답스펙트럼 해석법 개선사항 도출 연구: 고유주기 및 입력지반가속도를 중점으로)

  • Yun, Jung-Won;Han, Jin-Tae;Kim, Jong-Kwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.6
    • /
    • pp.17-34
    • /
    • 2020
  • In response spectrum analysis of pile-supported structure, an amplified seismic wave should be used as the input ground acceleration through the site-response analysis. However, each design standard uses different input ground acceleration criteria, which leads to confusion in determining the appropriate input ground acceleration. In this study, the ground accelerations were calculated through dynamic centrifuge model test, and the response spectrum analysis was performed using the calculated ground acceleration. Then, the moments derived from the test and analysis were compared, and a method for determining the appropriate input ground acceleration in response spectrum analysis was presented. Comparison of the experimental and simulated results reveals that modeling of the ground using elastic springs allows proper simulation of the natural period of the structure, and the use of a seismic wave that is amplified at the ground surface as the input ground acceleration provided the most accurate results for the response analysis of pile-supported structures in sands.