• Title/Summary/Keyword: 동적 외연적 시간적분법

Search Result 9, Processing Time 0.021 seconds

Proper Orthogonal Decomposition Based Intrusive Reduced Order Models to Accelerate Computational Speed of Dynamic Analyses of Structures Using Explicit Time Integration Methods (외연적 시간적분법 활용 동적 구조해석 속도 향상을 위한 적합직교분해 기반 침습적 차수축소모델 적용 연구)

  • Young Kwang Hwang;Myungil Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • Using the proper orthogonal decomposition (POD) based intrusive reduced order model (ROM), the total degrees of freedom of the structural system can be significantly reduced and the critical time step satisfying the conditional stability increases in the explicit time integrations. In this study, therefore, the changes in the critical time step in the explicit time integrations are investigated using both the POD-ROM and Voronoi-cell lattice model (VCLM). The snapshot matrix is composed of the data from the structural response under the arbitrary dynamic loads such as seismic excitation, from which the POD-ROM is constructed and the predictive capability is validated. The simulated results show that the significant reduction in the computational time can be achieved using the POD-ROM with sufficiently ensuring the numerical accuracy in the seismic analyses. In addition, the validations show that the POD based intrusive ROM is compatible with the Voronoi-cell lattice based explicit dynamic analyses. In the future study, the research results will be utilized as an elemental technology for the developments of the real-time predictive models or monitoring system involving the high-fidelity simulations of structural dynamics.

The dynamic explicit analysis of auto-body panel stamping process and investigating parameter affects of dynamic analysis (차체판넬 스템핑공정의 동적 외연적해석과 동적해석에 미치는 영향인자 분석)

  • Jung, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.380-390
    • /
    • 1998
  • In the present work a finite element formulation using dynamic explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and direct trial-and-error method. In this work, for economic analysis the faster punch velocity and the mass scaling method are introduced. To investigate the effects of punch velocity and mass scaling, the various values of punch velocity and the various mass scalings are used for numerical analysis. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oil pan and a fuel tank.

A Study of Auto-body Panel Correction of Forming Analysis that Use Dynamic-extensive Finite Element Method (동적-외연적 유한요소법을 이용한 차체 판넬 성형해석에 관한 연구)

  • Jung Dong Won;Hwang Jae Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.115-126
    • /
    • 2004
  • In the present work a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Analyzed auto-body panel stomping process correction of forming using software called Dynaform using dynamic extensive method. Further, the simulated results for the auto-body panel stamping processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

A Study of Forming Analysis by using Dynamic-explicit Finite Element Method in Can-container Production Process of Multi-Stage Assembly (Multi-Stage 조립품인 캔-용기 생산 공정에서 동적-외연적 유한요소법을 이용한 성형해석에 관한 연구)

  • Jung, Dong-Won;Hwang, Jae-Sin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.58-63
    • /
    • 2004
  • In the present work a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of multi-stage stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation Multi-Stage stamping is analyzed by using dynamic-explicit finite element method. Further, the simulated results for the panel stamping processes are shown and discussed. Its application is being increased especially in the stamping industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

A Study of Forming Analysis by using Dynamic-Explicit Finite Element Method in Auto-Body Stamping (차체 판넬 스템핑 공정에서 동적-외연적 유한요소법을 이용한 성형해석에 관한 연구)

  • Jung, Dong-Won;Hwang, Jae-Sin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.63-72
    • /
    • 2004
  • In this paper, a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Auto-body panel forming is analyzed by using dynamic-explicit finite element method. Further, the simulated results of the auto-body panel stamping processes are shown and discussed. Its application is being increased especially in the stamping industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

A Dynamic-explicit Finite Element Analysis for Hydro-forming Process (Hydro-forming 공정을 위한 동적-외연적 유한요소해석)

  • Jung, D.W.;Hwang, J.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.23-29
    • /
    • 2004
  • In this paper, a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of Hydro-forming processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Hydro-forming process for auto-body panel forming is analyzed by using dynamic-explicit finite element method. Further, the simulated results of the Hydro-forming processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

Three Dimensional FE Analysis of Acoustic Emission of Composite Plate (복합재료 파손 시 발생하는 음향방출의 3차원 유한요소 해석)

  • Paik, Seung-Hoon;Park, Si-Hyong;Kim, Seung Jo
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.15-20
    • /
    • 2005
  • In this paper, damage induced acoustic emission in the composite plate in numerically simulated by using the three dimensional finite element method and explicit time integration. Acoustic source is modeled by equivalent volume source. To verify the proposed method, dynamic displacements due to the elastic wave are compared with the experiment when the fiber is broken in the single fiber embedded isotropic plate. For the laminated composite plates, the results are compared between homogenized model and DNS approach which models fibers and matrix separately. To capture high frequencies in the elastic wave, small time step size and a large number of meshes are required. The parallel computing technology is introduced to solve a large scale problem efficiently.

Dynamic Characteristic Analysis of Active Gurney Flap Considering Rotational Effect (회전 효과를 고려한 Active Gurney Flap 의 동특성 해석)

  • Kee, YoungJung;Kim, TaeJoo;Kim, DeogKwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.183-191
    • /
    • 2015
  • In this study, the finite element analysis was carried out to investigate dynamic characteristics of the AGF(Active Gurney Flap) which is under development for reducing vibration and noise of the helicopter rotor system. The Gurney flap is a kind of small flat plate, mounted normal to the lower surface of the airfoil near to the trailing edge. An electric motor, L-shaped linkages and flap parts were integrated into a rotor bade, and 3~5/rev control was given to the AGF to reduce the vibration in the fixed frame. Thus, an explicit time integration method was adopted to investigate the dynamic response of the AGF with considering both centrifugal force due to the rotor rotation and active control input, and it can be seen that the vertical displacement of the AGF was satisfied to meet the design requirement.