• Title/Summary/Keyword: 동적 압축 실험

Search Result 141, Processing Time 0.028 seconds

A Study on the Dynamic Behavior of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 동적 변형 거동에 관한 연구)

  • Seo, Yongseok;Lee, Young-Shin;Song, Ohseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.206-216
    • /
    • 2017
  • This paper studies on the dynamic properties of Ti-6Al-4V alloy. After forming the four different micro structures(equiaxed, lamellar, and 2 bimodals) through heat treatments, static and dynamic properties of each structure were investigated quantitatively. Dynamic behaviors of the alloy are observed by the compressive split Hopkinson pressure bar(SHPB) tests. In additon, parameters of Johnson-Cook equation were determined from the SHPB test results. In order to verify the suitability of the parameters, high velocity impact tests were performed and the results were compared with the numerical analysis results. Although the flow stress and the fracture strain of the bimodal structures were higher than those of the equiaxed structure at the static tests, the superior dynamic properties were observed at the equiaxed structure due to the effects of higher maximum flow stress and fracture strain. From the numerical analysis, J-C parameters which are determined on this study describe well the dynamic behavior of Ti-6Al-4V alloy. Experimental and analysis results are consistent with ${\pm}5%$ of an average error.

Efficient Exploring Multiple Execution Path for Dynamic Malware Analysis (악성코드 동적 분석을 위한 효율적인 다중실행경로 탐색방법)

  • Hwang, Ho;Moon, Daesung;Kim, Ikkun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.2
    • /
    • pp.377-386
    • /
    • 2016
  • As the number of malware has been increased, it is necessary to analyze malware rapidly against cyber attack. Additionally, Dynamic malware analysis has been widely studied to overcome the limitation of static analysis such as packing and obfuscation, but still has a problem of exploring multiple execution path. Previous works for exploring multiple execution path have several problems that it requires much time to analyze and resource for preparing analysis environment. In this paper, we proposed efficient exploring approach for multiple execution path in a single analysis environment by pipelining processes and showed the improvement of speed by 29% in 2-core and 70% in 4-core through experiment.

An Experimental Study on the Dynamic Characteristics of Rubber Isolator (실험에 의한 방진고무의 동특성에 관한 연구)

  • Kim, W.D.;Kim, K.S.;Kwon, J.D.;Woo, C.S.
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.183-191
    • /
    • 2002
  • Rubber materials with excellent damping property are widely applied for vibration isolators. The dynamic characteristics of the rubber materials for vibration isolators were investigated. Dynamic tests for rubber materials with five different hardness were performed. In dynamic tests for test specimen, non-resonance method was used to obtain the dynamic storage modulus and loss factor. Moreover, the effect of dynamic vibration frequency, strain amplitude and temperature were investigated. As results, the storage modulus and loss factor generally increase when the hardness and frequency increase, and the glass transition temperature is $-50^{\circ}C$ by a large change in modulus and loss factor.

A Study on Rolling Contact Behaviors of a Flat Rough Surface with a Smooth Ball (구와 평면간의 구름접촉거동에 관한 연구)

  • 김경모;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.554-570
    • /
    • 1990
  • he rolling contact behaviors between a smooth ball and a flat rough surface under dynamic load are intricately affected by many factors, such as the diameter of a ball, normal load and the roughness of a flat surface etc. Accordingly, the experimental study is done to find them on the base of elastic hysteresis loss as theoretical approach is very difficult. The experimental apparatus composed of damped-free vibration system is used. This paper investigates the damping characteristics on the rolling contact area through rolling friction force and logarithmic decrement versus displacement obtained in accordance with the variations of those factors, and presents a new experimental method to find out contact width using the relations of logarithmic decrement and rolling friction force with displacement.

Analysis of the Characteristics of Liquidization Behavior of Sand Ground in Korea Using Repeated Triaxial Compression Test (반복삼축압축시험을 이용한 국내 모래지반의 액상화 거동 특성 비교)

  • Seo, Hyeok;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.493-506
    • /
    • 2021
  • Liquefaction refers to a phenomenon in which excessive pore water pressure occurs when a dynamic load such as an earthquake rapidly acts on a loose sandy soil saturated with soil, and the ground loses effective stress and becomes liquefied. The indoor repeated test for liquefaction evaluation can be confirmed through the repeated triaxial compression test and the repeated shear test. In this regard, this study tried to confirm the liquefaction resistance strength according to the relative density and particle size distribution of sand using the repeated triaxial compression test. As a result of the experiment, it was confirmed that the liquefaction resistance strength increased as the relative density increased regardless of the soil classification, and the liquefaction resistance strength according to the particle size distribution of the sand was confirmed that the liquefaction resistance strength of the SP sample close to SW was significantly higher. In addition, as a result of analyzing 30% of fine powder compared to 0% of fine powder, as the relative density increased to 40~70%, the liquefaction resistance strength decreased by 5~20%, and the domestic weathered soil ground had a fine liquefaction resistance strength compared to Jumunjin standard sand. When the minute was 10%, it was measured to be 30% or more, and when the fine particle was 30%, it was measured to be less than 50%.

Physical Weathering Characteristics of Mica-Schist in Sinbuk Area, Chuncheon, Korea (춘천시 신북지역에 분포하는 운모편암의 물리적 풍화특성)

  • Woo, Ik;Han, Byeong-Hyeon
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.771-784
    • /
    • 2007
  • This study shows the weathering characteristics of mica-schist affected by faulting and metamorphism through laboratory tests. Frozen-thaw test, which simulate the physical-chemical weathering processes in the laboratory, shows the important influence of foliation developed in mica-schist, resulting in $20{\sim}40%$ reduction of UCS according to weathering grade of rock. Slaking durability test was carried out for different weathering grade rock specimens and indicated that the specimens from fault area had a low durability index compared to other relatively fresh samples. XRD analysis allowed to estimate the dynamic evolution of mineral composition through wet-dry cycle in which the chlorite was the most important mineral leached out during slaking test. The creep test indicated that the main deformation produced along the foliation plane. The compacted clay minerals between discontinuity planes influence on the discontinuity shearing properties and result in a big difference between peak shear strength and residual strength. The results of laboratory tests on mica-schist show the possibility of a important deformation along the foliation plane or discontinuity.

A Time Slot Assignment Scheme for Sensor Data Compression (센서 데이터의 압축을 위한 시간 슬롯 할당 기법)

  • Yeo, Myung-Ho;Kim, Hak-Sin;Park, Hyoung-Soon;Yoo, Jae-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.11
    • /
    • pp.846-850
    • /
    • 2009
  • Recently, wireless sensor networks have found their way into a wide variety of applications and systems with vastly varying requirements and characteristics such as environmental monitoring, smart spaces, medical applications, and precision agriculture. The sensor nodes are battery powered. Therefore, the energy is the most precious resource of a wireless sensor network since periodically replacing the battery of the nodes in large scale deployments is infeasible. Energy efficient mechanisms for gathering sensor readings are indispensable to prolong the lifetime of a sensor network as long as possible. There are two energy-efficient approaches to prolong the network lifetime in sensor networks. One is the compression scheme to reduce the size of sensor readings. When the communication conflict is occurred between two sensor nodes, the sender must try to retransmit its reading. The other is the MAC protocol to prevent the communication conflict. In this paper, we propose a novel approaches to reduce the size of the sensor readings in the MAC layer. The proposed scheme compresses sensor readings by allocating the time slots of the TDMA schedule to them dynamically. We also present a mathematical model to predict latency from collecting the sensor readings as the compression ratio is changed. In the simulation result, our proposed scheme reduces the communication cost by about 52% over the existing scheme.

The High Temperature Deformation Behavior of the Wrought Superalloy 718 (단조용 초내열 718 합금의 고온 변형 거동)

  • Na, Y.S.;Choe, S.J.;Kim, H.M.
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.179-191
    • /
    • 1996
  • In order to understand the high temperature deformation behavior of superalloy 718, a rotating grade 718 alloy has been compression tested to about 0.7 upset ratio at $927{\sim}1066^{\circ}C$ temperature range and $5{\times}10^{-4}{\sim}5{\times}10^0sec^{-1}$ strain rate. The maximum flow stress was increased with increasing strain rate, and similar behavior was observed with decreasing temperature. At low temperature and high strain rates other than $5{\times}10^{-1}sec^{-1}$, strain softening was occurred mainly by dynamic recovery and deformation twinning processes, while at high temperature and low strain rates strain softening was offseted by dynamic recrystallization. At $5{\times}10^{-1}sec^{-1}$, strain hardening was occurred due to work hardening of the dynamic recrystallized grains. Strain rate sensitivity, m, was varied with strain rates. In the case of lower strain rate tests, m was measured as 0.3 and it was observed that the deformation was mainly controlled by dynamic recrystallization. At higher strain rate, m was lowered to 0.1 and the deformation was controlled by the dynamic recovery and the deformation twinning processes.

  • PDF

Detailed Investigation on the Dynamic Excess Pore Water Pressure through Liquefaction Tests using Various Dynamic Loadings (다양한 진동하중의 액상화 시험을 통한 동적 과잉간극수압에 대한 상세분석)

  • Choi, Jae-Soon;Jang, Seo-Yong;Kim, Soo-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.81-94
    • /
    • 2007
  • In most experimental researches on the liquefaction phenomenon, an earthquake as a random vibration has been regraded as a sinusoidal wave or a triangular wave with an equivalent amplitude. Together with the development in the part of signal control and data acquisition, dynamic experimental equipments in the soil dynamics have also developed rapidly and further more, several real earthquakes have been simulated in the large model test such as shaking table tests and centrifuge tests. In Korea, several elementary laboratory tests to simulate the real earthquake load were performed. From these test results, it was reported that the sinusoidal wave cannot reliably reflect the soil dynamic behavior under the real earthquake motion. In this study, 4 types of dynamic motions such as the sinusoidal wave, the triangular wave, the incremental triangular wave and several real earthquake motions which were classified with shock-type and vibration-type were loaded to find something new to explain the change of the excess pore water pressure under the real earthquake load. Through the detailed investigation and comparison on all test results, it is found that the dynamic flow is generated by the soil plastic deformation and the velocity head of dynamic flow is changed the pressure head in the un-drained condition. It can be concluded that the change of the excess pore water pressure is related to the pressure head of dynamic flow. Lastly, a new hypothesis to explain such a liquefaction initiation phenomenon under the real earthquake load is also proposed and verified.

Structural Performance Evaluation of Floating PV Power Generation Structure System (수상 부유식 태양광발전 구조물의 구조적 성능 평가)

  • Choi, Jin Woo;Seo, Su Hong;Joo, Hyung Joong;Yoon, Soon Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1353-1362
    • /
    • 2014
  • In recent years, numerous environmental problems associated with the excessive use of fossil fuel are taking place. For an alternative energy resource, the importance of renewable energy and the demands of facilities to generate renewable energy are continuously rising. To satisfy such demands, a large number of photovoltaic energy generation structures are constructed and planned with large scale. However, because these facility zones are mostly constructed on land, some troubles are occurred such as rising of construction cost due to the cost of land use, environmental devastation, etc. To solve such problems, the floating type photovoltaic energy generation system using FRP members have been developed in Korea. FRP members are recently available in civil engineering applications due to many advantages such as high strength, corrosion resistance, light weight, etc. and they are suitable to fabricate the floating structures because of their material properties. In this study, the analytical and experimental investigations to evaluate the structural performance of floating PV generation structure and SMC FRP vertical member which is used to fabricate the structure were conducted. The static and dynamic performances of floating PV generation structure are evaluated through the FE analysis and the experiment, respectively. Moreover, the structural safety evaluation and buckling analysis of SMC FRP vertical compression member are also conducted by the FE analysis, and the structural behavior of SMC FRP member under compression and pullout is investigated by the experiments. From this study, it was found that the structural system composed of pultruded FRP and SMC FRP members are safe enough to resist externally applied loads.