• Title/Summary/Keyword: 동적 압축 물성

Search Result 33, Processing Time 0.024 seconds

Acquisition and Verification of Dynamic Compression Properties for SHPB of Woven Type CFRP (Woven Type CFRP의 SHPB에 대한 동적 압축 물성 획득 및 검증)

  • Park, Ki-hwan;Kim, Yeon-bok;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.363-372
    • /
    • 2020
  • Dynamic compressive material properties at high strain rates is essential for improving the reliability of finite element analysis in dynamic environments, such as high-speed collisions and high-speed forming. In general, the dynamic compressive material properties for high strain rates can be obtained through SHPB equipment. In this study, SHPB equipment was used to acquire the dynamic compressive material properties to cope with the collision analysis of Woven tpye CFRP material, which is being recently applied to unmanned aerial vehicles. It is also used as a pulse shaper to secure a constant strain rate for materials with elastic-brittle properties and to improve the reliability of experimental data. In the case of CFRP material, since the anisotropic material has different mechanical properties for each direction, experiments were carried out by fabricating thickness and in-plane specimens. As a result of the SHPB test, in-plane specimens had difficulty in securing data reproducibility and reliability due to fracture of the specimens before reaching a constant strain rate region, whereas in the thickness specimens, the stress consistency of the specimens was excellent. The data reliability is high and a constant strain rate range can be obtained. Through finite element analysis using LS-dyna, it was confirmed that the data measured from the pressure rod were excessively predicted by the deformation of the specimen and the pressure rod.

Neural Network-Based Prediction of Dynamic Properties (인공신경망을 활용한 동적 물성치 산정 연구)

  • Min, Dae-Hong;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.37-46
    • /
    • 2023
  • Dynamic soil properties are essential factors for predicting the detailed behavior of the ground. However, there are limitations to gathering soil samples and performing additional experiments. In this study, we used an artificial neural network (ANN) to predict dynamic soil properties based on static soil properties. The selected static soil properties were soil cohesion, internal friction angle, porosity, specific gravity, and uniaxial compressive strength, whereas the compressional and shear wave velocities were determined for the dynamic soil properties. The Levenberg-Marquardt and Bayesian regularization methods were used to enhance the reliability of the ANN results, and the reliability associated with each optimization method was compared. The accuracy of the ANN model was represented by the coefficient of determination, which was greater than 0.9 in the training and testing phases, indicating that the proposed ANN model exhibits high reliability. Further, the reliability of the output values was verified with new input data, and the results showed high accuracy.

Effect of Transoctylene Rubber(TOR) on the Properties of Natural Rubber/isotactic Polypropylene Blends (Transoctylene rubber(TOR)의 첨가가 NR/isotactic PP 블렌드의 물성에 미치는 영향)

  • Yang, Yung-Chul;Nah, Chang-Woon;Chang, Young-Wook
    • Elastomers and Composites
    • /
    • v.36 no.3
    • /
    • pp.188-194
    • /
    • 2001
  • Thermoplastic elastomers based on dynamically vulcanized NR/TOR/PP (rubber/PP=70/30) blends were prepared in a Haake banbury mixer. Effect of TOR content on the mechanical, dynamic mechanical and thermal stability of the rubber/plastic blends was characterized by UTM, DMTA, and TGA. On the addition of trans-polyoctylene rubber(TOR) to the rubber phase, there was a decrease in compression set and increase in tensile properties, hardness and dynamic properties as well as thermal stability or the elastomeric blends. Improvements in the properties were believed to be due to an increase in crosslink density of the rubber phase and increase in homogeneity of the blends.

  • PDF

Dynamic Properties for Geomaterials of Railway as Determined by Large-scale Cyclic Triaxial Test (대형삼축압축시험을 이용한 철도노반재료의 동적 물성 제안)

  • Lee, Sung Jin;Hwang, Su Beom;Lee, Su Hyung;Lee, Seong Hyeok;Kim, Ki Jae
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.43-51
    • /
    • 2014
  • In the earth structures of railways, large coarse granular materials are widely used as fill materials. However, experimental studies that consider the dynamic properties of these coarse granular materials have rarely been carried out in Korea due to the lack of a large scale test apparatus in this country. In this study, large scale cyclic triaxial tests were carried out for materials such as reinforced roadbed (subballast, graded crushed stone), transition zone gravel, and the upper subgrade of a railway. These specimens were prepared according to certain conditions (dry unit weight, grain size distribution, and so on) specified in the Korea railroad design standard. Based on these large triaxial test results, normalized shear modulus and damping ratio curves according to small strain level are suggested. A model and coefficients for each material are also proposed.

Mechanical Properties of a Lining System under Cyclic Loading Conditions in Underground Lined Rock Cavern for Compressed Air Energy Storage (복공식 지하 압축공기에너지 저장공동의 내압구조에 대한 반복하중의 역학적 영향평가)

  • Cheon, Dae-Sung;Park, Chan;Jung, Yong-Bok;Park, Chul-Whan;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • In a material, micro-cracks can be progressively occurred, propagated and finally lead to failure when it is subjected to cyclic or periodic loading less than its ultimate strength. This phenomenon, fatigue, is usually considered in a metal, alloy and structures under repeated loading conditions. In underground structures, a static creep behavior rather than a dynamic fatigue behavior is mostly considered. However, when compressed air is stored in a rock cavern, an inner pressure is periodically changed due to repeated in- and-out process of compressed air. Therefore mechanical properties of surrounding rock mass and an inner lining system under cyclic loading/unloading conditions should be investigated. In this study, considering an underground lined rock cavern for compressed air energy storage (CAES), the mechanical properties of a lining system, that is, concrete lining and plug under periodic loading/unloading conditions were characterized through cyclic bending tests and shear tests. From these tests, the stability of the plug was evaluated and the S-N line of the concrete lining was obtained.

Dynamic Behavior of Weathered Granite Soils after Freezing-thawing (화강풍화토의 동결-융해 후의 동적 거동)

  • 윤여원;김세은;강병희;강대성
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.69-78
    • /
    • 2003
  • In order to investigate the dynamic behavior of weathered granite soils before and after freezing-thawing, cyclic triaxial tests were conducted for the specimens not only with the variation of silt contents within 20% but with plasticity index within 20%. As the results, the dynamic shear modulus of weathered granite soils decreased with increasing silt contents. However, the change in damping ratio was negligible. The influence of freezing-thawing on shear modulus and damping ratio was minimal for the granite soils with variation of silt contents. For the case of the weathered soils with variation of plasticity index, the shear modulus increased with plasticity index within 20%, while the modulus decreased remarkably after freezing-thawing.

Development and Verification of Large Triaxial Testing System for Dynamic Properties of Granular Materials (조립재료 동적물성 산정을 위한 대형삼축압축시험장비 구축 및 검증)

  • Lee, Sung-Jin;Kim, Yun-Ki;Choo, Yun-Wook;Lee, Sei-Hyun;Kang, Tae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.5-17
    • /
    • 2010
  • Coarse granular material is used as important fill material in most of large embankments such as railway, road, dam and so on. Therefore, the accurate design parameters of the coarse granular material are necessarily required in design and construction. The behavior of the coarse granular material was not well understood because of the lack of large testing equipment capable of coarse granular material. A large triaxial testing system was developed in this research, capable of large specimens of 500 mm, 300 mm and 150 mm in diameter. In the new large triaxial testing system, the load cell is installed inside the triaxial cell and axial displacement is measured locally on a specimen in order to improve control and measurement in small strain level. Urethane specimens of 300 mm and 50 mm in diameter were prepared. The large triaxial tests were performed on the 300 mm diameter urethane specimens while RC/TS and impact echo tests on the 50 mm diameter urethane specimens to verify this testing system. In this verification test results, we could ascertain the reasonable test results of the KRRI large triaxial testing system.

An Experimental Study on Dynamic Properties of Concrete with Vibration-Mitigation Materials (제진재 혼입 콘크리트의 동적물성에 관한 실험적 연구)

  • Chung, Young-Soo;Park, Yong-Goo
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.261-270
    • /
    • 1999
  • In these days, construction activities have caused civil petitions associated with vibration-induced damages or nuisances. Therefore, it is strongly needed to develop a remedial technique to mitigate unfavorable effects. The objective of this experimental research is to investigate material and structural dynamic characteristics of vibration-controlled concretes which have been proportionally mixed with various vibration reducing material, such as latex, rubber powder, plastic resin, polystyrofoams and etc. Normal and high strength concrete specimens are also prepared for corresponding comparison. As part of the recycling research for obsolete rubber and plastic materials, 32 concrete cylinders and 10 concrete flexural beams have been made for material and structural dynamic properties, respectively. In accordance with the resonance test on concrete cylinders, it can be concluded that concrete with vibration-reducing material have relatively larger material damping ration than normal or high strength concrete. Styrofoam is determined to be very effective vibration-reducing mixtures. From the vibration test on 10 concrete flexural beams, meamwhile, of importance observations was that material damping ratio is very smaller than structural damping ratio of corresponding specimen. But further vibration test on more flexural beams should be strongly needed by varying support conditions.

Design and Fabrication of Split Hopkinson Pressure Bar for Dynamic Mechanical Properties of Self-reinforced Polypropylene Composite (폴리프로필렌 자기 보강 복합재의 동적 물성 구축을 위한 Split Hopkinson Pressure Bar의 설계 및 제작)

  • Kang, So-Young;Kim, Do-Hyoung;Kim, Dong-Hyun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.221-226
    • /
    • 2018
  • The Split Hopkinson Pressure Bar(SHPB) has been the most widely used apparatus to characterize dynamic mechanical behavior of materials at high strain rates between $100s^{-1}$ and $10,000s^{-1}$. The SHPB test is based on the wave propagation theory which was developed to give the stress, strain and strain rate in the specimen using the strains measured in the incident and transmission bars. In this study, the SHPB was directly designed and fabricated for the dynamic mechanical properties of fiber reinforced plastic (FRP) composites. In addition, this apparatus was verified for the validity by comparing the strain data obtained through the high speed camera and Digital Image Correlation(DIC) during the high strain rate compression test of the self-reinforced polypropylene composite (SRPP) specimen.

Study on the dynamic deformation characteristics of pulse shapers for controlling the shape of impact waves (충격파형 제어를 위한 펄스쉐이퍼의 동적 변형 특성에 관한 연구)

  • Yang, Jeong-Hun;Jo, Sang-Ho;Kim, Won-Beom;Kim, Seung-Gon;Song, Yeong-Su;Seong, Nak-Hun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.198-202
    • /
    • 2009
  • Split Hopkinson pressure bar(SHPB) is used to obtain compressive stress-strain data and deformation characteristics of brittle materials such as rock and concrete. SHPB demands both dynamic stress equilibrium condition and nearly constant strain rate before the failure of the specimen. Pulse shape technique, which places a thin metal disk between launched impact bar and incident bar, should be adopted to satisfy both conditions. In this study, metallic disks with various shapes were used to control the incident impact wave. The results show that the peak value of stress and the length of waves increased with decreasing thickness and diameter of the pulse shaper. In order to investigate shape and strain rate-dependency of the pulse shapers, dynamic compressive stress-strain curves were obtained and analyzed.

  • PDF