• Title/Summary/Keyword: 동적 데이터

Search Result 2,098, Processing Time 0.024 seconds

Storm-Based Dynamic Tag Cloud for Real-Time SNS Data (실시간 SNS 데이터를 위한 Storm 기반 동적 태그 클라우드)

  • Son, Siwoon;Kim, Dasol;Lee, Sujeong;Gil, Myeong-Seon;Moon, Yang-Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.309-314
    • /
    • 2017
  • In general, there are many difficulties in collecting, storing, and analyzing SNS (social network service) data, since those data have big data characteristics, which occurs very fast with the mixture form of structured and unstructured data. In this paper, we propose a new data visualization framework that works on Apache Storm, and it can be useful for real-time and dynamic analysis of SNS data. Apache Storm is a representative big data software platform that processes and analyzes real-time streaming data in the distributed environment. Using Storm, in this paper we collect and aggregate the real-time Twitter data and dynamically visualize the aggregated results through the tag cloud. In addition to Storm-based collection and aggregation functionalities, we also design and implement a Web interface that a user gives his/her interesting keywords and confirms the visualization result of tag cloud related to the given keywords. We finally empirically show that this study makes users be able to intuitively figure out the change of the interested subject on SNS data and the visualized results be applied to many other services such as thematic trend analysis, product recommendation, and customer needs identification.

Privacy Preserving Data Publication of Dynamic Datasets (프라이버시를 보호하는 동적 데이터의 재배포 기법)

  • Lee, Joo-Chang;Ahn, Sung-Joon;Won, Dong-Ho;Kim, Ung-Mo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6A
    • /
    • pp.139-149
    • /
    • 2008
  • The amount of personal information collected by organizations and government agencies is continuously increasing. When a data collector publishes personal information for research and other purposes, individuals' sensitive information should not be revealed. On the other hand, published data is also required to provide accurate statistical information for analysis. k-Anonymity and ${\iota}$-diversity models are popular approaches for privacy preserving data publication. However, they are limited to static data release. After a dataset is updated with insertions and deletions, a data collector cannot safely release up-to-date information. Recently, the m-invariance model has been proposed to support re-publication of dynamic datasets. However, the m-invariant generalization can cause high information loss. In addition, if the adversary already obtained sensitive values of some individuals before accessing released information, the m-invariance leads to severe privacy disclosure. In this paper, we propose a novel technique for safely releasing dynamic datasets. The proposed technique offers a simple and effective method for handling inserted and deleted records without generalization. It also gives equivalent degree of privacy preservation to the m-invariance model.

Damage estimation for structural safety evaluation using dynamic displace measurement (구조안전도 평가를 위한 동적변위 기반 손상도 추정 기법 개발)

  • Shin, Yoon-Soo;Kim, Junhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.87-94
    • /
    • 2019
  • Recently, the advance of accurate dynamic displacement measurement devices, such as GPS, computer vision, and optic laser sensor, has enhanced the structural monitoring technology. In this study, the dynamic displacement data was used to verify the applicability of the structural physical parameter estimation method through subspace system identification. The subspace system identification theory for estimating state-space model from measured data and physics-based interpretation for deriving the physical parameter of the estimated system are presented. Three-degree-freedom steel structures were fabricated for the experimental verification of the theory in this study. Laser displacement sensor and accelerometer were used to measure the displacement data of each floor and the acceleration data of the shaking table. Discrete state-space model generated from measured data was verified for precision. The discrete state-space model generated from the measured data extracted the floor stiffness of the building after accuracy verification. In addition, based on the story stiffness extracted from the state space model, five column stiffening and damage samples were set up to extract the change rate of story stiffness for each sample. As a result, in case of reinforcement and damage under the same condition, the stiffness change showed a high matching rate.

Dynamic Partitioning Scheme for Large RDF Data in Heterogeneous Environments (이종 환경에서 대용량 RDF 데이터를 위한 동적 분할 기법)

  • Kim, Minsoo;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.10
    • /
    • pp.605-610
    • /
    • 2017
  • In distributed environments, dynamic partitioning is needed to resolve the load on a particular server or the load caused by communication among servers. In heterogeneous environments, existing dynamic partitioning schemes can distribute the same load to a server with a low physical performance, which results in a delayed query response time. In this paper, we propose a dynamic partitioning scheme for large RDF data in heterogeneous environments. The proposed scheme calculates the query loads with its frequency and the number of vertices used in the query for load balancing. In addition, we calculate the server loads by considering the physical performance of the servers to allocate less of a load to the servers with a smaller physical performance in a heterogeneous environment. We perform dynamic partitioning to minimize the number of edge-cuts to reduce the traffic among servers. To show the superiority of the proposed scheme, we compare it with an existing dynamic partitioning scheme through a performance evaluation.

Performance and Root Mean Squared Error of Kernel Relaxation by the Dynamic Change of the Moment (모멘트의 동적 변환에 의한 Kernel Relaxation의 성능과 RMSE)

  • 김은미;이배호
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.788-796
    • /
    • 2003
  • This paper proposes using dynamic momentum for squential learning method. Using The dynamic momentum improves convergence speed and performance by the variable momentum, also can identify it in the RMSE(root mean squared error). The proposed method is reflected using variable momentum according to current state. While static momentum is equally influenced on the whole, dynamic momentum algorithm can control the convergence rate and performance. According to the variable change of momentum by training. Unlike former classification and regression problems, this paper confirms both performance and regression rate of the dynamic momentum. Using RMSE(root mean square error ), which is one of the regression methods. The proposed dynamic momentum has been applied to the kernel adatron and kernel relaxation as the new sequential learning method of support vector machine presented recently. In order to show the efficiency of the proposed algorithm, SONAR data, the neural network classifier standard evaluation data, are used. The simulation result using the dynamic momentum has a better convergence rate, performance and RMSE than those using the static moment, respectively.

  • PDF

The Development of u-GIS Spatial Database Management System (u-GIS 공간 데이터베이스 관리시스템 개발)

  • Min, Kyoung-Wook;Kim, Ju-Wan
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2009.04a
    • /
    • pp.215-217
    • /
    • 2009
  • u-GIS는 기존 정적인 공간데이터와 동적인 GeoSensor 데이터를 융합하여 처리하는 시스템을 말한다. 기존 정적인 공간 데이터는 주로 2차원 공간 데이터였으며 최근 유비쿼터스 환경에서는 이를 확장한 3차원 공간 데이터 및 다차원 시공간 데이터의 요구가 급증하고 있다. 최근 국가 차원에서 3차원 공간 데이터를 구축하고 있으며 DBMS가 아닌 파일 단위로 데이터를 저장하고 관리하고 있다. 이 경우, 데이터의 중복 저장, 표준 인터페이스의 부재, 서버 중심의 데이터 제공의 어려움 등의 문제가 발생한다. 따라서 본 연구에서는 3차원 공간데이터를 효과적으로 저장 관리하기 위하여 3차원 공간 DBMS를 연구 개발하였다.

  • PDF

A Modeling Methodology for Analysis of Dynamic Systems Using Heuristic Search and Design of Interface for CRM (휴리스틱 탐색을 통한 동적시스템 분석을 위한 모델링 방법과 CRM 위한 인터페이스 설계)

  • Jeon, Jin-Ho;Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.179-187
    • /
    • 2009
  • Most real world systems contain a series of dynamic and complex phenomena. One of common methods to understand these systems is to build a model and analyze the behavior of them. A two-step methodology comprised of clustering and then model creation is proposed for the analysis on time series data. An interface is designed for CRM(Customer Relationship Management) that provides user with 1:1 customized information using system modeling. It was confirmed from experiments that better clustering would be derived from model based approach than similarity based one. Clustering is followed by model creation over the clustered groups, by which future direction of time series data movement could be predicted. The effectiveness of the method was validated by checking how similarly predicted values from the models move together with real data such as stock prices.

Experimental Implementation of Continuous GPS Data Processing Procedure on Near Real-Time Mode for High-Precision of Medium-Range Kinematic Positioning Applications (고정밀 중기선 동적측위 분야 응용을 위한 GPS 관측데이터 준실시간 연속 처리절차의 실험적 구현)

  • Lee, Hungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.31-40
    • /
    • 2017
  • This paper deals with the high precision of GPS measurement reduction and its implementation on near real-time and kinematic mode for those applications requiring centimeter-level precision of the estimated coordinates, even if target stations are a few hundred kilometers away from their references. We designed the system architecture, data streaming and processing scheme. Intensive investigation was performed to determine the characteristics of the GPS medium-range functional model, IGS infrastructure and some exemplary systems. The designed system consisted of streaming and processing units; the former automatically collects GPS data through Ntrip and IGS ultra-rapid products by FTP connection, whereas the latter handles the reduction of GPS observables on static and kinematic mode to a time series of the target stations' 3D coordinates. The data streaming unit was realized by a DOS batch file, perl script and BKG's BNC program, whereas the processing unit was implemented by definition of a process control file of BPE. To assess the functionality and precision of the positional solutions, an experiment was carried out against a network comprising seven GPS stations with baselines ranging from a few hundred up to a thousand kilometers. The results confirmed that the function of the whole system properly operated as designed, with a precision better than ${\pm}1cm$ in each of the positional component with 95% confidence level.

GDCS : Energy Efficient Grid based Data Centric Storage for Sensor Networks (GDCS : 센서네트워크를 위한 에너지 효율적인 그리드 기반 데이터 중심 저장 시스템)

  • Shin, Jae-Ryong;Yoo, Jae-Soo;Song, Seok-Il
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.98-105
    • /
    • 2009
  • In this paper, new data centric storage that is dynamically adapted to the change of work load is proposed. The proposed data centric storage distributes the load of hot spot area by using multilevel grid technique. Also, the proposed method is able to use existing routing protocol such as GPSR (Greedy Perimeter Stateless Routing) with small changes. Through simulation the proposed method enhances the lifetime of sensor networks over one of the state-of-the-art data centric storages. We implement the proposed method based on a operating system for sensor networks, and evaluate the performance through running based on a simulation tool.

Object Classification Based on LVQ with Dynamic output neuron (동적 output neuron을 이용한 LVQ 기반 물체 분류)

  • Kim, Heon-Gi;Jo, Seong-Won;Kim, Jae-Min;Lee, Jin-Hyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.427-430
    • /
    • 2007
  • 기존의 LVQ(Learning Vector Quantization) 방법을 이용하여 물체를 분류하면 데이터의 학습이 빠르고 연산량이 적어 실시간으로 물체를 분류할 수 있는 장점이 있다. 하지만 데이터의 훈련시 output neuron의 개수를 정확히 예측할 수 없고 output neuron의 개수에 따라 물체를 분류하는 정확도가 매우 달라질 수 있다. 그러므로 본 논문에서는 output neuron의 개수를 데이터의 특성에 맞게 결정해주는 알고리즘을 제시한다. DLVQ(Dynamic Learning Vector Quantization) 알고리즘은 승자로 결정된 가중치 벡터의 부류가 샘플 데이터의 부류와 같으면 업데이트하고 다르면 새로운 가중치 벡터로 생성한다. 제한한 알고리즘의 가장 다른 부분은 미리 output neuron의 개수를 정하는 것이 아니라 훈련 과정에서 동적으로 output neuron의 개수를 생성하는 것이다. 그리고 클러터의 구분 방법을 제시하여 사람, 차, 클러터를 구분할 수 있다.

  • PDF