• 제목/요약/키워드: 동적 광탄성 하이브리드 법

검색결과 4건 처리시간 0.017초

등방성체용 동적 광탄성 하이브리드 법 개발에 관한 연구 (A Study on the Development of the Dynamic Photoelastic Hybrid Method for Isotropic Material)

  • 신동철;황재석
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2220-2227
    • /
    • 2000
  • In this paper, dynamic photoelastic hybrid method is developed and its validity is certified. The dynamic photoelastic hybrid method can be used on the obtaining of dynamic stress intensity factors and dynamic stress components. The effect of crack length on the dynamic stress intensity factors is less than those on the static stress intensity factors. When structures are under the dynamic mixed mode load, dynamic stress intensity factor of mode I is almost produced. Dynamic loading device manufactured in this research can be used on the research of dynamic behavior when mechanical resonance is produced and when crack is propagated with the constant velocity.

두 상이한 등방성 이종재료용 동적 광탄성 하이브리드법 개발에 관한 연구 (A Study on the Development of the Dynamic Photoelastic Hybrid Method for Two Dissimilar Isotropic Bi-Materials)

  • 신동철;황재석;권오성
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.434-442
    • /
    • 2001
  • When the interfacial crack of two dissimilar isotropic bi-materials is propagated with constant velocity along the interface, stress and displacement components are derived in this research. The dynamic photoelastic experimental hybrid method for bimaterial is introduced. It is assured that stress components and dynamic photoelastic hybrid method developed in this research are valid. Separating method of stress component is introduced from only dynamic photoelastic fringe patterns. Crack propagating velocity of interfacial crack is 80∼85% (in case of aluminum, 24.3∼25.9%) of Rayleigh wave velocity of epoxy resin. The near-field stress components of crack-tip are similar with those of pure isotropic material under static or dynamic loading, but very near-field stress components of crack-tip are different from those.

등방성/직교이방성 이종재료의 진전 계면균열에 대한 동적 광탄성 실험 하이브리드 법 개발 (Development of the Dynamic Photoelastic Hybrid Method for Propagating Interfacial Crack of Isotropic/Orthotropic Bi-materials)

  • 황재석;신동철;김태규
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1055-1063
    • /
    • 2001
  • When the interfacial crack of isotropic/orthotropic bi-materials is propagated with constant velocity along the interface, stress and displacement components are derived in this research. The dynamic photoelastic experimental hybrid method for the bimaterial is introduced. It is assured that stress components and dynamic photoelastic hybrid developed in this research are valid. Separating method of stress components is introduced from only dynamic photoelastic fringe patterns. Crack propagating velocity of interfacial crack is 69∼71% of Rayleigh wave velocity of epoxy resin. The near-field stress components of bonded interface of bimaterial are similar with those of pure isotopic material and two dissimilar isotropic bimaterials under static or dynamic loading, but very near-field stress components of bonded interface of bimaterial are different from those.

정적 및 동적 하중을 받는 두 상이한 등방성 이종재료의 이종재료상수에 대한 연구 (A Study on the Bimaterial Constant of Two Dissimillar Isotropic Bimaterial Under Static and Dynamic Load)

  • 신동철;황재석
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1776-1785
    • /
    • 2004
  • In this research, the relationships between static bimaterial constant and dynamic oscillation index are studied. It was certified that static bimaterial constant has the same form equation as the dynamic oscillation index. Bimaterial constant and oscillation index are increased with the increment of Young's modulus ratio and approached to the some value. Isochromatic fringe patterns are slanted to the left side with increment of bimaterial constants and oscillation index. Though patterns of stress components in above the crack surface are similar to each other, their magnitudes are different a little. In the ahead of crack tip, there are big differences in the isochromatic fringe patterns and their magnitudes. The influence of bimaterial with Young's modulus ratio is bigger in the propagation crack than in the stationary crack.