• Title/Summary/Keyword: 동적 경사 응답

Search Result 16, Processing Time 0.026 seconds

Long Term Monitoring of Dynamic Characteristics of a Jacket-Type Offshore Structure Using Dynamic Tilt Responses and Tidal Effects on Modal Properties (동적 경사 응답을 이용한 재킷식 해양구조물의 장기 동특성 모니터링 및 조류 영향 분석)

  • Yi, Jin-Hak;Park, Jin-Soon;Han, Sang-Hun;Lee, Kwang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.97-108
    • /
    • 2012
  • Dynamic responses were measured using long-term monitoring system for Uldolmok tidal current pilot power plant which is one of jacket-type offshore structures. Among the dynamic quantities, the tilt angle was chosen because the low frequency response components can be precisely measured by dynamic tiltmeter, and the natural frequencies and modal damping ratio were successfully identified using proposed LS-FDD (least squared frequency domain decomposition) method. And the effects of tidal height and tidal current velocity on the variation of natural frequencies and modal damping ratios were investigated in time and frequency domain. Also the non-parametric models were tested to model the relationship between tidal conditions and modal properties such as natural frequencies and damping ratios.

Study on the Applicability of Standard Design Response Spectrum Analysis Method for Pile-type Mooring Facilities (말뚝식 계류시설의 표준설계응답스펙트럼 해석법 적용성 연구)

  • Oh, Jeong-Keun;Jeong, Yeong-Seok;Kwon, Min-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.27-36
    • /
    • 2020
  • The purpose of this paper is to study on the applicability of the standard design response spectrum from the response spectrum analysis method, mainly applied to pile mooring facilities. To this end, after performing the ProShake 1-dimensional site response considering various geological conditions, the current standard design response spectrum was compared, and the ground-pile model in time history and two-dimensional site response analysis using Abaqus were performed to analyze the dynamic behavior of the ground-pile and to examine the selection method of the reference surface of the response spectrum on the installed slope, respectively. As a result, it was confirmed that no problems were found in the applicability of the current standard design response spectrum and no improvements are needed as well when considering the characteristics of the ground-pile dynamic behavior and the slope of the pile mooring facility.

Evaluation of Seismic Performance of Pile-supported Wharves with Batter Piles through Response Spectrum Analysis (응답스펙트럼해석을 통한 경사말뚝이 설치된 잔교식 안벽의 내진성능 평가)

  • Yun, Jung-Won;Han, Jin-Tae;Kim, JongKwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.57-71
    • /
    • 2021
  • The pile-supported wharf is the port structure in which the upper deck is supported by piles or columns. By installing batter piles in this structure, horizontal load such as earthquake loads can be partially delivered as axial forces. The codes suggests using the response spectrum analysis as a preliminary design method for seismic design of pile-supported wharf, and suggests modeling the piles using virtual fixed points or soil spring methods for this analysis. Recently, several studies have been conducted on pile-supported wharves composed of vertical piles to derive a modeling method that appropriately simulates the dynamic response of structures during response spectrum analysis. However, studies related to the response spectrum analysis of pile-supported wharves with batter piles are insufficient so far. Therefore, this study performed the dynamic centrifuge model test and response spectrum analysis to evaluate the seismic performance according to the modeling method of pile-supported wharves with batter piles. As a result of test and analysis, it is confirmed that modeling using the Terzaghi (1955) constant of horizontal subgrade reaction (nh) most appropriately simulates the actual response in the case of the pile-supported wharf with batter piles.

Transient Response of Functionally Graded Piezoelectric Ceramic with Crack (균열이 있는 기능경사 압전 세라믹의 충격 특성에 관한 연구)

  • Jeong Woo Shin;Tae-Uk Kim;Sung Chan Kim
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.21-27
    • /
    • 2003
  • Using the theory of linear piezoelectricity, the dynamic response of a central crack in a functionally graded piezoelectric ceramic under anti-plane shear impact is analyzed. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. By using the Laplace and Fourier transform, the problem is reduced to two pairs of dual integral equations and then into Fredholm integral equations of the second kind. Numerical values on the dynamic stress intensity factors are presented to show the dependence of the gradient of material properties and electric loading.

Dynamic Response Analysis of Rotating Functionally Graded Thin-Walled Blades Exposed to Steady Temperature and External Excitation (고온에서 외부 가진력을 받는 회전하는 경사기능 박판 블레이드의 동적응답 해석)

  • Oh, B.Y.;Na, Sung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.643-648
    • /
    • 2004
  • This paper is dedicated to the thermoelastic modeling and dynamic response of the rotating blades made of functionally graded ceramic-metal based materials. The blades modeled as non-uniform thin walled beams fixed at the hub with various selected values of setting angles and pre-twisted angles. In this study, the blade is rotating with a constant angular velocity and exposed to a steady temperature field as well as external excitation. Moreover, the effect of the temperature gradient through the blade thickness is considered. Material properties are graded in the thickness direction of the blade according to the volume fraction power law distribution. The numerical results highlight the effects of the volume fraction, temperature gradient, taper ratio, setting angle and pre-twisted angle on the dynamic response of bending-bending coupled beam characteristics are provided for the case of a biconvex cross section and pertinent conclusions are outlined.

  • PDF

Dynamic Response Analysis of Rotating Functionally Graded Thin-Walled Blades Exposed to Steady High Temperature and External Excitation (고온에서 외부 가진력을 받는 회전하는 경사기능 박간 블레이드의 동적응답 해석)

  • Na Sunsoo;Oh Byungyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.976-982
    • /
    • 2005
  • This paper is dedicated to the thermoelastic modeling and dynamic response of the rotating blades made of functionally graded ceramic-metal based materials. The blades are modeled as non-uniform thin walled beams fixed at the hub with various selected values of setting angles and pre-twisted angles. In this study, the blade is rotating with a constant angular velocity and exposed to a steady temperature field as well as external excitation. Moreover, the effect of the temperature gradient through the blade thickness is considered. Material properties are graded in the thickness direction of the blade according to the volume fraction power law distribution. The numerical results highlight the effects of the volume fraction, temperature gradient, taper ratio, setting angle and pre-twisted angle on the dynamic response of bending-bending coupled beam characteristics and pertinent conclusions are outlined.

엔드밀 형상에 따른 절삭가공 분석과 DB 구축 및 형상설계 S/W 개발에 관한 연구

  • 한창규;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.267-267
    • /
    • 2004
  • 엔드밀은 산업현장에서 정밀 금형과 다이 제조 시 넓게 사용되는 절삭 공구이며 공작기계의 향상에 따라 많은 발전을 거듭해 왔다 공작기계의 고속화에 따라 공작기계의 측면에서는 강성 증가, 열변형의 억제와 동적 안정성의 개선 및 응답성 개선을 통하여 정밀도를 향상시키고 이송속도와 절삭속도의 증가를 통해 생산성을 증대시키고 있으며 공구의 측면에서는 새로운 재종 및 코팅기법의 개발을 통해 공구수명의 향상을 달성하고 있다. 또한 공구형상의 최적화를 통해 동적 안정성을 확보하고 가공 정밀도를 개선하고자 하는 다양한 시도가 이루어지고 있다.(중략)

  • PDF

A Study on the Dynamic Behaviour of Cut-and-Cover Tunnel by Shaking Table Test (진동대 실험을 이용한 개착식터널의 동적 거동특성에 관한 연구)

  • 정형식;조병완;이영남;이두화;이용준
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.173-180
    • /
    • 2001
  • This research is aimed at investigating the dynamic response of cut-and-cover tunnel to seismic waves. We carried out shaking table test which is used a 1/40-scale(the width of prototype tunnel is about 14.2m, the height is about 8.5m) model for this research, and we analyzed the effect of depth of tunnel and slope of the ground in relation to the dynamic responses of tunnel. As a result of the test, the stress and acceleration along the tunnel decreased accordingly to the depth of increment, and this phenomenon is caused by the increase of the confining effect of ground. Also, the dynamic responses of tunnel showed a tendency to rise according as ground declined gently. In comparison the result of shaking table test with that of structural analysis on ordinary condition, we conclude that seismic waves do not affect cut-and-cover tunnel when the depth of tunnel is over the diameter of tunnel.

  • PDF

Evaluation of Seismic Performance of Pile-supported Wharves Installed in Saturated Sand through Response Spectrum Analysis and Dynamic Centrifuge Model Test (동적원심모형실험 및 응답스펙트럼해석을 통한 포화지반에 관입된 잔교식 안벽의 내진성능 평가)

  • Yun, Jung-Won;Han, Jin-Tae;Lee, Seokhyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.73-87
    • /
    • 2021
  • Pile-supported wharf is a structure that can transmit and receive cargo, and it is mainly installed on saturated inclined ground. In the seismic design of these structures, the codes suggest using the response spectrum analysis method as a preliminary design method. However, guideline on modeling method for pile-supported wharf installed in saturated soil is lacking. Therefore, in this study, the dynamic centrifuge model test and response spectrum analysis were performed to evaluate the seismic performance of pile-supported wharf installed into the saturated soil. For the test, some sections (3×3 pile group) among the pile-supported wharf were selected, and they were classified into two model (dry and saturated sand model). Then the response spectrum analysis was performed by using the soil spring method to the test model. As a result of test and analysis, the m om ent difference occurred within a m axim um of 51% in the dry sand m odel and the saturated sand model where liquefaction does not occur, and it was found that the pile moment by depth was properly simulated. Therefore, in the case of these models, it is appropriate to perform the modeling using the Terzaghi (1955) constant of horizontal subgrade reaction (nh)

Dynamic Response of Ieodo Ocean Research Station (이어도해양과학기지 구조물 계측신호 분석)

  • Kim Dong-Hyawn;Shim Jae-Seol;Min In-Kee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.53-62
    • /
    • 2006
  • Structural measurements obtained from accelerometers, strain gauges. and tilt meters at Ieodo ocean research station was analyzed. In the acceleration signals, dynamic characteristics of the station were round by using the measured dynamic responses under different wave attacks and were compared with those by numerical analysis. Data from strain gauges and tilt-meters were also analyzed to identify the present state of dynamic response. Effect of wave height on the dynamic characteristics were investigated. The present results and those which will be measured and analyzed later can be used to identify and to assess the state of the station whether it is health or not.