• Title/Summary/Keyword: 동적평형상태

Search Result 61, Processing Time 0.022 seconds

A Dynamic Simulation for Small Turboshaft Engine with Free Power Turbine Using The CMF Method (CMF 기법을 이용한 소형 분리축 방식 터보축 엔진의 동적모사)

  • 공창덕;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 1998
  • A steady-state and dynamic simulation program for a small multi-purpose turboshaft engine with the free power turbine was developed. In order to reduce developing cost, time and risk, a turbojet engine whose performance was well-known was used for the gas generator, and life time was improved by replacing turbine material and by using Larson-Miller curves. The component characteristic of the power turbine was derived from scaling the gas generator turbine. Equilibrium equations of mass flow rate and work were used for the steady-state performance analysis, and the Constant Flow Method(CMF) was used for the dynamic performance simulation. The step fuel scheduling was carried out for acceleration in the dynamic simulation. Through this simulation, it was found that the overshoot of the turbine inlet temperature exceeded over the compressor turbine limit temperature.

  • PDF

Dynamic Stability of a Damaged Ship in Beam Wind and Waves (손상된 선박의 횡풍.횡파중에서의 동적 안정성)

  • K.H. Sohn;S.G. Lee;K.S. Choi;Y.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.50-59
    • /
    • 2000
  • This paper presents a brief outline of dynamic stability of a damaged ship at final stage of flooding in rough beam wind and waves. One degree-of-freedom, roll equation is adopted with effects of flooding water and external forces due to wind and waves, but without effect of sloshing. We discuss the dynamic stability of the damaged ship in terms of capsizing probability based on risk analysis, the method of which was firstly proposed by Umeda et al.[6] to high speed craft in intact condition. As a result, we can evaluate the dynamic stability of the damaged ship in probabilistic manner according to sea state, operating condition and damage situation.

  • PDF

Development of a Computer Code for Analyzing Time-dependent Nuclides Concentrations in the Multi-stage Continuous HLW Processing System (I) - Equilibrium Steady State - (다단계 연속후처리를 포함하는 핵주기공정의 핵종농도 동적분포 해석코드 계발(I) -정상 평형상태 해석모델-)

  • Oh, Se-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.262-264
    • /
    • 2000
  • 원자로 내에서 연소 중인 핵연료나 저장 또는 재처리 중인 사용후핵연료의 성분으로서 시설의 공정설계, 안전성분석 및 차폐설계에 중요한 입력자료가 되는 핵분열생성물질, 방사화생성물 및 악티나이드의 핵종 농도와 이에 대응하는 방사능 강도의 기기 별 시간변 화율을 해석할 수 있는 코드 개발할 목적으로 MULTISAMS 정상 평형상태 모델을 구현하였다. MULTISAMS 코드의 반응공정 모델은 서로 연결되어 있으며 내부에 방사성물질의 혼합유체가 순환하는 세 종류의 반응기(원자로, 열교환기 및 화학반응기) 계통에서 자연적 또는 설계에 의해 일어나는 현상으로서; 반응기 간의 물질 흐름; 각 반응기 내에서 방사성 붕괴, 변환, 이동과 중성자 흡수 및 핵분열; 외부로부터 특정 핵종의 유입혹은 유출을 고려한 시간종속 핵종농도보존방정식 이론에 근거한다. 코드의 유용성 및 신뢰성을 검증하기 위해 현재 개념설계가 진행 중인 AMBIDEXTER원자력 에너지시스템을 대상으로 ORIGEN2 계산과 비교하였다. 두 코드 간의 입력조건과 배경이론차이점 때문에 절대적 비교가 불가능하므로 단순이론의 중간매개코드로서 SAMS를 이용한 2단계 비교방법을 따랐다. 결론은 MULTISAMS는 ORIGEN2 계산의 수렴치와 근사하게 일치하면서 ORIGEN2 가 다룰 수 없는 핵주기 연속후처리공정의 정상가동 시 핵종 평형농도를 기기 별로 계산할 수 있다는 장점을 확인하였다.

  • PDF

Dynamic Equilibrium Position Prediction Model for the Confluence Area of Nakdong River (낙동강 합류부 삼각주의 동적 평형 위치 예측 모델: 감천-낙동강 합류점 중심 분석 연구)

  • Minsik Kim;Haein Shin;Wook-Hyun Nahm;Wonsuck Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.435-445
    • /
    • 2023
  • A delta is a depositional landform that is formed when sediment transported by a river is deposited in a relatively low-energy environment, such as a lake, sea, or a main channel. Among these, a delta formed at the confluence of rivers has a great importance in river management and research because it has a significant impact on the hydraulic and sedimentological characteristics of the river. Recently, the equilibrium state of the confluence area has been disrupted by large-scale dredging and construction of levees in the Nakdong River. However, due to the natural recovery of the river, the confluence area is returning to its pre-dredging natural state through ongoing sedimentation. The time-series data show that the confluence delta has been steadily growing since the dredging, but once it reaches a certain size, it repeats growth and retreat, and the overall size does not change significantly. In this study, we developed a model to explain the sedimentation-erosion processes in the confluence area based on the assumption that the confluence delta reaches a dynamic equilibrium. The model is based on two fundamental principles: sedimentation due to supply from the tributary and erosion due to the main channel. The erosion coefficient that represents the Nakdong River confluence areas, was obtained using data from the tributaries of the Nakdong River. Sensitivity analyses were conducted using the developed model to understand how the confluence delta responds to changes in the sediment and water discharges of the tributary and the main channel, respectively. We then used annual average discharge of the Nakdong River's tributaries to predict the dynamic equilibrium positions of the confluence deltas. Finally, we conducted a simulation experiment on the development of the Gamcheon-Nakdong River delta using recorded daily discharge. The results showed that even though it is a simple model, it accurately predicted the dynamic equilibrium positions of the confluence deltas in the Nakdong River, including the areas where the delta had not formed, and those where the delta had already formed and predicted the trend of the response of the Gamcheon-Nakdong River delta. However, the actual retreat in the Gamcheon-Nakdong River delta was not captured fully due to errors and limitations in the simplification process. The insights through this study provide basic information on the sediment supply of the Nakdong River through the confluence areas, which can be implemented as a basic model for river maintenance and management.

Dynamic Non-Linear Analysis of Ocean Cables Subjected to Earthquakes (지진력을 받는 해양케이블의 동적 비선형해석)

  • 김남일;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.77-86
    • /
    • 1999
  • In the previous $paper^{(1),(2)}$, a geometrically non-linear finite element formulation of spatial cables subjected to self-weights and support motions was presented using multiple noded cable elements and how to determine the initial equililbrium state of cables was addressed. In this paper, in order to perform dynamic non-linear analysis of ocean cables subjected to support motions and earthquakes, a numerical method to calculate Morison forces and incorporate effects of earthquake motions is presented based on the Newmark method. Challenging example problems are presented in order to investigate dynamic non-linear behaviors of ocean cables subjected to support motions and earthquake loadings.

  • PDF

A Dynamic Simulation for Small Turbushaft Engine with Free Power Turbine Using the CMF Method (CMF 기법을 이용한 소형 분리축 방식 터보축 엔진의 동적모사)

  • 공창덕;기자영;고광웅
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.11-11
    • /
    • 1998
  • 다목적으로 활용할 수 있는 터보축 엔진의 개발을 위한 정상상태 및 동적모사 프로그램을 개발하였다. 개발비, 개발시간, 개발위험도의 절감을 위해 가스발생기 부분은 성능이 잘 알려진 기존의 터보제트 엔진을 활용하였으며 약 3000hr 이상의 수명을 확보하기 위해 터빈재질을 교체하고, Larson-Miller 곡선을 이용하여 최대회전속도와 최대 터빈 입구온도를 각각 35000 RPM과 1140 K의 결정하였다 추가되는 동력터빈의 구성품 성능선도는 압축기 터빈 성능선도를 축척하여 사용하였다. 정상상태 성능해석에는 유량 및 일평형 방정식을 이용하였으며, 동력터빈이 각각 73%, 80%, 90%, 100% RPM일 때 가스발생기를 75%(24500 RPM)에서 100%(35000 RPM)까지 5% 간격으로 나누어 계산을 수행하였다.

  • PDF

Dynamic Characteristics for Fuel Shutoff Valve of a Gas Generator (가스발생기 연료개폐밸브의 동적 거동)

  • Lee, Joong-Youp;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • Fuel shutoff valve of a gas generator controls propellant mass flowrate of a rocket engine, by using pilot pressure and spring force. The developing fuel shutoff valve can be self sustained even though pilot pressure is removed in an actuator. Therefore, it is necessary to analyze the characteristics of the forces with respect to the opening and closing of the valve in order to evaluate its performance. In light of this, the valve has been designed to adjust the control pressure for the opening of the poppet and to determine the working fluid pressure at which the valve starts to close. This paper also has been designed dynamic model using the AMESim and predicted flow coefficient of the valve by Fluent CFD analysis. Various results from the prediction and the analysis have been compared with experiments. Finally, dynamic characteristics of the valve have been verified with experimental results.

Study on the dynamic deformation characteristics of pulse shapers for controlling the shape of impact waves (충격파형 제어를 위한 펄스쉐이퍼의 동적 변형 특성에 관한 연구)

  • Yang, Jeong-Hun;Jo, Sang-Ho;Kim, Won-Beom;Kim, Seung-Gon;Song, Yeong-Su;Seong, Nak-Hun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.198-202
    • /
    • 2009
  • Split Hopkinson pressure bar(SHPB) is used to obtain compressive stress-strain data and deformation characteristics of brittle materials such as rock and concrete. SHPB demands both dynamic stress equilibrium condition and nearly constant strain rate before the failure of the specimen. Pulse shape technique, which places a thin metal disk between launched impact bar and incident bar, should be adopted to satisfy both conditions. In this study, metallic disks with various shapes were used to control the incident impact wave. The results show that the peak value of stress and the length of waves increased with decreasing thickness and diameter of the pulse shaper. In order to investigate shape and strain rate-dependency of the pulse shapers, dynamic compressive stress-strain curves were obtained and analyzed.

  • PDF

Analysis of Dynamic Crack Propagation using MLS Difference Method (MLS 차분법을 이용한 동적균열전파 해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-26
    • /
    • 2014
  • This paper presents a dynamic crack propagation algorithm based on the Moving Least Squares(MLS) difference method. The derivative approximation for the MLS difference method is derived by Taylor expansion and moving least squares procedure. The method can analyze dynamic crack problems using only node model, which is completely free from the constraint of grid or mesh structure. The dynamic equilibrium equation is integrated by the Newmark method. When a crack propagates, the MLS difference method does not need the reconstruction of mode model at every time step, instead, partial revision of nodal arrangement near the new crack tip is carried out. A crack is modeled by the visibility criterion and dynamic energy release rate is evaluated to decide the onset of crack growth together with the corresponding growth angle. Mode I and mixed mode crack propagation problems are numerically simulated and the accuracy and stability of the proposed algorithm are successfully verified through the comparison with the analytical solutions and the Element-Free Galerkin method results.

The Correlation between Concepts on Chemical Reaction Rates and Concepts on Chemical Equilibrium in High School Students (고등학생들의 화학반응속도 개념과 화학평형 개념간의 상관관계)

  • Park, Guk-Tae;Kim, Gyeong-Su;Park, Gwang-Seo;Kim, Eun-Suk;Kim, Dong-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.247-255
    • /
    • 2006
  • The purpose of this study was to investigate the correlation between concepts on chemical reaction rates and concepts on chemical equilibrium in high school students. The subjects of the investigation consisted of 120 third grade students attending high school in K city of Kyunggi province. For this study, questionnaire relevant to the subject of chemical reaction rates and chemical equilibrium was developed and the answers were analyzed. As a result of the study, a large percentage of high school students answered questions on reaction rates correctly, but only a small percentage of the students could give explanations. Many high school students answered questions on the rates of forward reactions correctly, but not the questions on the rates of reverse reactions. For the concepts on chemical equilibrium, many high school students gave correct answers when faced with equilibrium questions that only required the understanding of one side of the reaction. But the students could not answer the questions requiring understanding of both forward and reverse reactions as well. Overall, there was a little high correlation between concepts on chemical reaction rates and concepts on chemical equilibrium in high school students. Especially, high school students with little understanding of reverse reaction rates did not understand that chemical equilibrium is a dynamic equilibrium. Also, high school students with little understanding of the collision mechanism regarding chemical reaction rates did not understand the effect of concentration and catalyst factors on chemical equilibrium. And the correlation between concepts on chemical reaction rates and concepts on chemical equilibrium related to concentration and catalyst factors was low. In conclusion, the formation of scientific concepts on chemical reactions rates can decrease misconceptions on chemical equilibrium. Also the teaching-learning method limited to one side of a reaction can cause difficulty in forming the concepts on chemical dynamic equilibrium. Therefore, the development of a teaching-learning method which covers both the forward and reverse reactions can be effective in helping students form the concepts on chemical equilibrium.