• Title/Summary/Keyword: 동적콘관입시험

Search Result 46, Processing Time 0.264 seconds

Stiffness Characterization of Subgrade using Crosshole-Type Dynamic Cone Penetrometer (크로스홀 형태의 동적 콘 관입기를 이용한 노반의 강성특성 평가)

  • Hong, Won-Taek;Choi, Chan Yong;Lim, Yujin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.55-63
    • /
    • 2018
  • In order to support the load of the train with enough stiffness, a study on an effective method for the characterization of the stiffness of the compacted subgrade is required. In this study, the crosshole-type dynamic cone penetrometer (CDCP) is used for the stiffness characterization of the subgrade along the depth. For the application of the CDCP test, three points of compacted subgrades are selected as the study sites. For the study sites, CDCP test, in-situ density test, and light falling weight deflectometer (LFWD) test are conducted. As the results of CDCP tests, shear wave velocity profiles are obtained by using the travel times and the travel distances of the shear waves along the depth. In addition, maximum shear modulus ($G_{max}$) profiles are estimated by using the density of the subgrades and the shear wave velocity profiles. The averaged maximum shear moduli at each testing point are highly correlated with the dynamic deflection moduli ($E_{vd}$) determined by LFWD tests. Therefore, a reliable stiffness characterization of the subgrade can be conducted by using CDCP tests. In addition, because CDCP characterizes the stiffness of the subgrade along the depth rather than a representative value, CDCP test may be effectively used for the stiffness characterization of the subgrade.

Analysis of Correlation among Various Compaction Evaluation Methods for Estimating of the Bearing Capacity on Subgrades (노상토의 지지력 평가를 위한 다짐평가기법의 상관성 분석)

  • Lee, Joonyong;Jeoung, Jae-Hyeung;Choi, Changho;Kim, Jin-Young;Jin, Hyunwoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.45-58
    • /
    • 2015
  • Even though the plate bearing test (PBT) to evaluate the load baring capacity and the field density test to evaluate the relative density are mainly used for quality control of soil compaction in Korea, use of the dynamic cone penetrometer test (DCPT) and the dynamic plate bearing test (DPBT) considering economic feasibility, rapidity, and suitability for field conditions increase to use for quality control of soil compaction. In this study, bearing capacity and relative density of subgrade with thickness of 20 cm, 30 cm, and 40 cm are estimated using PBT, DCPT, DPBT and field density test in three field compaction tests, and the relationship among various compaction evaluation methods is analyzed and discussed.

Assessment of Shear Strength Parameter for Weathered Soils Using Artificial Neural Network (인공신경망을 이용한 풍화토의 강도정수 산정)

  • Lee, Moo-Cheol;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.147-154
    • /
    • 2008
  • Weathered soil slope loses its shear strength if it is exposed in the air for a long time or in contact with water. And this kind of strength loss is remarkable in dam slope which has very big difference in water level according to the season. In this study, shear strength loss of weathered soil due to saturation had been found out through dryness and wetness repetition direct shear test. Also relation between penetration blow number(Nc) and shear strength parameter had been found out through small sized dynamic cone penetration test device and the correlation equation of Nc had been proposed through artificial neural network analysis to estimate shear strength parameter easily.

Physical and Mechanical Characteristics of Subgrade Soil using Nondestructive and Penetration Tests (비파괴시험과 관입시험에 의한 노상토의 물리·역학적 특성)

  • Kim, Kyu-Sun;Kim, Dong-Hee;Fratta, Dante;Lee, Woojin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.19-27
    • /
    • 2011
  • This paper evaluates the applicability of wave-based nondestructive methodologies and a penetration test for compaction quality measurements during road construction. To evaluate the physical and mechanical properties of compacted subgrade soil layers, soil stiffness gauge (SSG), time domain reflectometry (TDR), and miniature electro-mechanical systems (MEMS) accelerometers were used to nondestructively evaluate the soil response during and after compaction and dynamic cone penetrometer (DCP) profiles were used to evaluate the soil shear strength after compaction was completed. At the field site, two types of soils were compacted with four different compaction equipments and energies. Field testing results indicate that soil parameters evaluated by different testing methods, which are SSG, TDR, MEMS accelerometer, and DCP, are highly correlated. In addition, it is shown that the physical and mechanical tests deployed in this study can be used as alternative methods to the conventional compaction quality evaluation methods when assessing the overall quality and the engineering response of compacted lifts.

Development of Portable Multi-function Sensor (Mini CPT Cone + VWC Sensor) to Improve the Efficiency of Slope Inspection (비탈면 점검 효율화를 위한 휴대형 복합센서 개발)

  • Kim, Jong-Woo;Jho, Youn-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • In order to efficiently analysis the stability of a slope, measuring the shear strength of soil is needed. The Standard Penetration Test (SPT) is not appropriate for a slope inspection due to cost and weights. One of the ways to effectively measure the N-value is the Dynamic Cone Penetration Test (DCPT). This study was performed to develop a minimized multi-function sensors that can easily estimate CPT values and Volumetric Water Content. N value with multi-fuction sensor DCPT showed -2.5 ~ +3.9% error compared with the SPT N value (reference value) in the field tests. Also, the developed multi-fuction sensor system was tested the correlation between the CPT test and the portable tester with indoor test. The test result showed 0.85 R2 value in soil, 0.83 in weathered soil, and 0.98 in mixed soil. As a result of the field test, the multi-function sensor shows the excellent field applicability of the proposed sensor system. After further research, it is expected that the portable multi-function sensor will be useful for general slope inspection.

Use of Dynamic Cone Penetrometer and Light-Weight Deflectometer for Quality Control on Subgrade Base (토공사 다짐품질 관리를 위한 동적콘관입시험 및 소형충격재하시험의 활용에 관한 연구)

  • Baek, Sung-Ha;Cho, Jin-Woo;Kim, Namgyu;Kim, Jin-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.55-67
    • /
    • 2022
  • This study applied the dynamic cone penetrometer test (DCPT) and light-weight deflectometer test (LWDT) to the quality control of subgrade base by performing DCPT, LWDT, and plate load test (PLT) at two earthwork sites. Although DCPT and LWDT were performed under the same conditions, the results showed significant variation with the test location. Because the measured value at the time of the initial blow, which varies depending on the test location, significantly influenced the test result. Thus, it was appropriate to ignore the first two blows as preliminary blows and use subsequent measurements as quality control indicators. In addition, DCPT, LWDT, and PLT results showed a high correlation under the same conditions. Especially regression analyses using averaged data for each experiment condition tended to yield significantly improved R2 values over individual point data sets. This indicates that average DCPT and LWDT values at various adjacent locations are better quality control indicators for subgrade bases than individual point values.

Fundamental Study on Establishing the Subgrade Compaction Control Criteria of DCPT with Laboratory Test and In-situ Tests (실내 및 현장실험를 통한 DCPT의 노상토 다짐관리기준 정립에 관한 기초연구)

  • Choi, Jun-Seong
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.103-116
    • /
    • 2008
  • In this study, in-situ testing method, Dynamic Cone Penetration Test(DCPT) was presented to establish a new compaction control criteria with using mechanical property like elastic modulus instead of unit weight for field compaction control. Soil chamber tests and in-situ tests were carried out to confirm DCPT tests can predict the designed elastic modulus after field compaction, and correlation analysis among the DCPT, CBR and resilient modulus of sub grade were performed. Also, DCPT test spacing criteria in the construction site was proposed from the literature review. In the result of laboratory tests, Livneh's equation was the best in correlation between PR of DCPT and CBR, George and Pradesh's equation was the best in the predicted resilient modulus. In the resilient modulus using FWD, Gudishala's equation estimates little larger than predicted resilient modulus and Chen's equation estimates little smaller. And KICT's equation estimates the modulus smaller than predicted resilient modulus. But using the results of laboratory resilient modulus tests considering the deviatoric and confining stress from the moving vehicle, the KICT's equation was the best. In the results of In-situ DCPT tests, the variation of PR can occur according to size distribution of penetrate points. So DCPT test spacing was proposed to reduce the difference of PR. Also it was shows that average PR was different according to subgrade materials although the subgrade was satisfied the degree of compaction. Especially large sized materials show smaller PR, and it is also found that field water contents have influence a lot of degree of compaction but a little on the average PR of the DCPT tests.

  • PDF

Determination of shear wave velocity profiles in soil deposit from seismic piezo-cone penetration test (탄성파 피에조콘 관입 시험을 통한 국내 퇴적 지반의 전단파 속도 결정)

  • Sun Chung Guk;Jung Gyungja;Jung Jong Hong;Kim Hong-Jong;Cho Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.125-153
    • /
    • 2005
  • It has been widely known that the seismic piezo-cone penetration test (SCPTU) is one of the most useful techniques for investigating the geotechnical characteristics including dynamic soil properties. As the practical applications in Korea, SCPTU was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTU waveform data obtained from the testing sites, the first arrival times of shear waves were and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity profiles (VS) were derived based on the refracted ray path method based on Snell's law and similar to the trend of cone tip resistance (qt) profiles. In Incheon area, the testing depths of SCPTU were deeper than those of conventional down-hole seismic tests. Moreover, for the application of the conventional CPTU to earthquake engineering practices, the correlations between VS and CPTU data were deduced based on the SCPTU results. For the empirical evaluation of VS for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification Index (IC), the authors suggested the VS-CPTU data correlations expressed as a function of four parameters, qt, fs, $\sigma$, v0 and Bq, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the down-hole seismic test during SCPTU and the conventional CPTU, it is shown that the VS-CPTU data correlations for all soils clays and sands suggested in this study is applicable to the preliminary estimation of VS for the Korean deposits and is more reliable than the previous correlations proposed by other researchers.

  • PDF

Geotechnical Characteristics of a Waste Lime Embankment (부산물석회 성토지반의 지반공학적 특성)

  • Hong, Seung Seo;Kim, YoungSeok;Bae, Gu-Jin
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.547-555
    • /
    • 2015
  • This work investigated the geotechnical characteristics of an embankment constructed with a mixture of soil and waste lime. The waste lime was a by-product of the manufacture of Na2CO3 at a near by chemical factory in Incheon. Field measurements were take three years after construction, and included geotechnical tests such as field density measurement, plate loading testing, dynamic cone penetration testing, and field CBR measurement. The results indicate that the geotechnical characteristics of waste lime mixtures are suitable for embankment works.

A Study on the Relation between Dynamic Deflection Modulus and In-Situ CBR Using a Portable FWD (소형FWD를 이용한 노상토의 동적변형계수와 현장 CBR의 상관 연구)

  • Kang, Hee Bog;Kim, Kyo Jun;Park, Sung Kyoon;Kim, Jong Ryeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2008
  • The road construction, as part of effort to ease the worsening traffic, has been underway throughout the nation, while the existing road has been increasingly losing its load carrying capacity due to such factors as heavy traffic and weathering. In the case of site, the soil type, plasticity index, and specific gravity were SC, 12.2%, and 2.66, respectively. The maximum dry density, optimum moisture content and modified CBR were $1.895g/cm^3$ (Modified Compaction D), 13.6%, and 16.2%, respectively. A correlation of coefficient expressed good interrelationship by 0.90 between the CBR estimated from a dynamic penetration index of dynamic cone penetrometer test and a deformation modulus converted from a dynamic deflection modulus obtained from a portable FWD test.