• Title/Summary/Keyword: 동적영역

Search Result 1,221, Processing Time 0.034 seconds

A Study of Key Pre-distribution Scheme in Hierarchical Sensor Networks (계층적 클러스터 센서 네트워크의 키 사전 분배 기법에 대한 연구)

  • Choi, Dong-Min;Shin, Jian;Chung, Il-Yong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.1
    • /
    • pp.43-56
    • /
    • 2012
  • Wireless sensor networks consist of numerous small-sized nodes equipped with limited computing power and storage as well as energy-limited disposable batteries. In this networks, nodes are deployed in a large given area and communicate with each other in short distances via wireless links. For energy efficient networks, dynamic clustering protocol is an effective technique to achieve prolonged network lifetime, scalability, and load balancing which are known as important requirements. this technique has a characteristic that sensing data which gathered by many nodes are aggregated by cluster head node. In the case of cluster head node is exposed by attacker, there is no guarantee of safe and stable network. Therefore, for secure communications in such a sensor network, it is important to be able to encrypt the messages transmitted by sensor nodes. Especially, cluster based sensor networks that are designed for energy efficient, strongly recommended suitable key management and authentication methods to guarantee optimal stability. To achieve secured network, we propose a key management scheme which is appropriate for hierarchical sensor networks. Proposed scheme is based on polynomial key pool pre-distribution scheme, and sustain a stable network through key authentication process.

Blocking Intelligent Dos Attack with SDN (SDN과 허니팟 기반 동적 파라미터 조절을 통한 지능적 서비스 거부 공격 차단)

  • Yun, Junhyeok;Mun, Sungsik;Kim, Mihui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • With the development of network technology, the application area has also been diversified, and protocols for various purposes have been developed and the amount of traffic has exploded. Therefore, it is difficult for the network administrator to meet the stability and security standards of the network with the existing traditional switching and routing methods. Software Defined Networking (SDN) is a new networking paradigm proposed to solve this problem. SDN enables efficient network management by programming network operations. This has the advantage that network administrators can flexibly respond to various types of attacks. In this paper, we design a threat level management module, an attack detection module, a packet statistics module, and a flow rule generator that collects attack information through the controller and switch, which are components of SDN, and detects attacks based on these attributes of SDN. It proposes a method to block denial of service attacks (DoS) of advanced attackers by programming and applying honeypot. In the proposed system, the attack packet can be quickly delivered to the honeypot according to the modifiable flow rule, and the honeypot that received the attack packets analyzed the intelligent attack pattern based on this. According to the analysis results, the attack detection module and the threat level management module are adjusted to respond to intelligent attacks. The performance and feasibility of the proposed system was shown by actually implementing the proposed system, performing intelligent attacks with various attack patterns and attack levels, and checking the attack detection rate compared to the existing system.

Analysis on Characteristics of Therapeutic Factors of VRAT(Virtual Reality Art Therapy) Contents (가상현실 미술치료 (VRAT) 콘텐츠의 치료적 요인 특성에 대한 분석)

  • Rim, Sung-Ryun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • Since the early 20th century, along with the interest and development of alternative psychotherapy, the field of art therapy has also been developed and expanded. In particular, the recent development of technology and the untact era brought about by the COVID-19 Pandemic is accelerating the development of new digital art therapy contents. Among them, the hot interest in virtual reality is raising expectations and questions about the effectiveness of psychotherapy given by new media beyond traditional art therapy. In this study, the characteristics of VRAT (Virtual Reality Art Therapy) content therapeutic factors were investigated through qualitative literature analysis based on the conceptual framework and therapeutic components of ETC (Expressive Therapies Continumm), an integrated art therapy theory. As a result of the study, VRAT contents showed mostly therapeutic factors in the left hemisphere that triggered the user's dynamic, perceptual, and cognitive factors, and the therapeutic factors in the right hemisphere, which focused on sensory, emotional, and symbolic factors, were relatively few. The reason seems to be due to the nature of the experimental stage, the absence of active intervention by the therapist and long-term session composition, and the fear, clumsiness, and unfamiliarity of users about VRAT in addition to the characteristics and technical limitations of the VRAT medium. The limitations of the study include the small number of documents to be analyzed and the insufficient form of current VRAT to be called art therapy. It is expected that the characteristics of the therapeutic factors of VRAT content media and environment derived as a result of this study will be usefully used for the appropriate development of VRAT content in the future.

Introduction of Two-region Model for Simulating Long-Term Erosion of Bentonite Buffer (벤토나이트 완충재 장기 침식을 모사하기 위한 Two-region 모델 소개)

  • Jaewon Lee;Jung-Woo Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.228-243
    • /
    • 2023
  • Bentonite is widely recognized and utilized as a buffer material in high-level radioactive waste repositories, mainly due to its favorable characteristics such as swelling capability and low permeability. Bentonite buffers play an important role in ensuring the safe disposal of radioactive waste by providing a low permeability barrier and effectively preventing the migration of radionuclides into the surrounding rock. However, the long-term performance of bentonite buffers still remains a subject of ongoing research, and one of the main concerns is the erosion of the buffer induced by swelling and groundwater flow. The erosion of the bentonite buffer can significantly impact repository safety by compromising the integrity of buffer and leading to the formation of colloids that may facilitate the transport of radionuclides through groundwater, consequently elevating the risk of radionuclide migration. Therefore, it is very important to numerically quantify the erosion of bentonite buffer to evaluate the long-term performance of bentonite buffer, which is crucial for the safety assessment of high-level radioactive waste disposal. In this technical note, Two-region model is introduced, a proposed model to simulate the erosion behavior of bentonite based on a dynamic bentonite diffusion model, and quantitative evaluation is conducted for the bentonite buffer erosion with this model.

Influence of Pile Driving-Induced Vibration on the Adjacent Slope (파일 항타진동이 인접 비탈면에 미치는 영향)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.27-40
    • /
    • 2023
  • A pile is a structural element that is used to transfer external loads from superstructures and has been widely utilized in construction fields all over the world. The method of installing a pile into the ground should be selected based on geotechnical conditions, location, site status, environmental factors, and construction costs, among others. It can be divided into two types: direct hammering and preboring. The direct hammering method installs a pile into the bearing layer, such as rock, using a few types of hammer, generating a considerable amount of pile driving-induced vibration. The vibration from pile driving influences adjacent structures and the ground; therefore, quantitatively investigating the effects of vibration is inevitably required. In this study, two-dimensional dynamic numerical modeling and analysis are performed using the finite difference method to investigate the influence on the adjacent slope, including temporary supporting system. Time-dependent loading induced by pile driving is estimated and used in the numerical analysis. Consequently, large surface displacement is estimated due to surface waves and less wave deflection, and refraction at the surface. The total displacement decreases with the increase of the distance from the source. However, lateral displacement at the top of the slope shows a larger value than vertical displacement, and the overall displacement tends to be concentrated near the face of the slope.

Development and Assessment for Resilient Modulus Prediction Model of Railroad Trackbeds Based on Modulus Reduction Curve (탄성계수 감소곡선에 근거한 철도노반의 회복탄성계수 모델 개발 및 평가)

  • Park, Chul Soo;Hwang, Seon Keun;Choi, Chan Yong;Mok, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.71-79
    • /
    • 2009
  • This study is to develope the resilient modulus prediction model, which is the function of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered granite soil, and crushed-rock soil mixture. The model consists of the maximum Young's modulus and nonlinear values for higher strain, analogous to dynamic shear modulus. The maximum value is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea, was evaluated using a 3-D elastic multilayer computer program (GEOTRACK). The results were compared with measured elastic vertical displacement during the passages of freight and passenger trains at two locations, whose sub-ballasts were crushed stone and weathered granite soil, respectively. The calculated vertical displacements of the sub-ballasts are within the order of 0.6mm, and agree well with measured values. The prediction models are thus concluded to work properly in the preliminary investigation.

Generation of calibration standard gases using capillary gas divider: uncertainty measurement and method validation (다중 모세관을 이용한 교정용 표준가스의 제조: 불확도와 유효성 평가)

  • Lee, Sangyun;Hwang, Eun-Jin;Jung, Hye-Ja;Lee, Kwang-Woo;Chun, Ki-Joon
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.369-375
    • /
    • 2006
  • Calibration gas mixtures were prepared using dynamic volumetric method according to ISO 6145-5 and the uncertainty was evaluated. Ten identical capillaries with 0.25 mm in inner diameter and 50 cm in length were applied in this system. Dilution ratio of parent gas was determined by the number of capillaries that passes parent gas and that passes balance gas through. Capillaries were made of Teflon which had good chemical stability against adsorption of gaseous substances. Mechanical valves were introduced in this system in order to minimize the thermal effect of solenoid valves. Concentration of prepared gases were compared with master grade standard gases in cylinders made by RiGAS Co. and calibration of the instrument were completed using comparison method according to ISO 6143. Experimental results showed that the coefficient of variance of diluted oxygen standard gases showed less then 0.2% in most dilution range, that of diluted hydrogen sulfide standard gases showed less then 1.0%. Therefore, it is proven that the standard gases prepared by this system are appropriate to be used as a calibration standards in ambient monitoring, etc.

Comparative Study on Feature Extraction Schemes for Feature-based Structural Displacement Measurement (특징점 추출 기법에 따른 구조물 동적 변위 측정 성능에 관한 연구)

  • Junho Gong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.74-82
    • /
    • 2024
  • In this study, feature point detection and displacement measurement performance depending on feature extraction algorithms were compared and analyzed according to environmental changes and target types in the feature point-based displacement measurement algorithm. A three-story frame structure was designed for performance evaluation, and the displacement response of the structure was digitized into FHD (1920×1080) resolution. For performance analysis, the initial measurement distance was set to 10m, and increased up to 40m with an increment of 10m. During the experiments, illuminance was fixed to 450lux or 120lux. The artificial and natural targets mounted on the structure were set as regions of interest and used for feature point detection. Various feature detection algorithms were implemented for performance comparisons. As a result of the feature point detection performance analysis, the Shi-Tomasi corner and KAZE algorithm were found that they were robust to the target type, illuminance change, and increase in measurement distance. The displacement measurement accuracy using those two algorithms was also the highest. However, when using natural targets, the displacement measurement accuracy is lower than that of artificial targets. This indicated the limitation in extracting feature points as the resolution of the natural target decreased as the measurement distance increased.

Estimation of a 9.77 G/T Small Fishing Vessel's Operating Performance Depending on Forward Speed Based on 3-DoF Captive Model Tests (9.77톤급 소형어선의 3자유도 구속모형시험을 통한 선속 별 운항성능 추정)

  • Dong-Jin Kim;Haeseong Ahn;Kyunghee Cho;Dong Jin Yeo
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.305-314
    • /
    • 2023
  • In this study, a mathematical model of a 9.77 G/T small fishing vessel was established based on captive model tests. The powering and manoeuvring performances of the vessel in the harbor and coastal sea were focused on, so captive model tests were conducted up to the full-scale speed of 8 knots. Propeller open water, resistance, and self-propulsion tests of a 1/3.5-scaled model ship were performed in a towing tank, and the full-scale powering performance was predicted. Hydrodynamic coefficients in the mathematical model were obtained by rudder open water, horizontal planar motion mechanism tests of the same model ship. In particular, in static drift and pure yaw tests which were conducted at a speed of 2 to 8 knots, the linear hydrodynamic coefficients varied with the ship speed. The effect of the ship speed on the linear coefficients was considered in the mathematical model, and manoeuvring motions, such as turning circles and zig-zags, were simulated with various approach speeds and analyzed.

A Study on Recovery from Potentially Lethal Damage Induced by $\gamma-Irradiation$ in Plateau-phase Vero Cells in vitro (평형기의 Vero세포계에서 방사선($\gamma$-선) 조사 후 발생한 잠재치사 손상의 회복에 관한 연구)

  • Kim, Il-Han;Choi, Eun-Kyung;Ha, Sung-Whan;Park, Charn-Il;Cha, Chang-Yong
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1988
  • Recovery from potentially lethal damage (PLDR) after irradiation was studied in plateau-phase culture of Vero cells in vitro. Unfed plateau-phase cells were irradiated with dose of 1 to 9Gy using Cs-137 irradiator. Cells then were incubated again and left in situ for 0, 1, 2, 3, 4, 5, 6, and 24 hours and then were trypsinized explanted, and subcultured in fresh RPMI-1640 media containing $0.33\%$ agar. Cell survival was measured by colony forming ability. An adequate number of heavily irradiated Vero cells were added as feeder cells to make the total cell number constant in every culture dish. As the postirradiation in situ incubation time increased, surviving fraction increased by PLDR. The rate of PLDR was so rapid that increased surviving fraction reached saturation level at 2 to 4 hours after in situ incubation. As the radiation dose increased, the rate of PLDR fastened and the magnitude of increased surviving fraction at saturation level by PLOR also increased. In analysis of cell survival curve fitted to the linear-quadratic model, the linear inactivation coefficient $(\alpha)$ decreased largely and reached nearly to zero but the quadratic inactivation coefficient $(\beta)$ increased minimally by increment of postirradiation in situ incubation time. So PLDR mainly affected the damage expressed as $\alpha$, In the multitarget model, significant change was not obtained in $D_0\;but\;in D_q$. Therefore, shoulder region in cell survival curve was mainly affected by PLDR and terminal slope was not influenced at all. And dose-modifying factor by PLDR was relatively higher in shoulder region, that is, in low dose area below 3 Gy.

  • PDF