• Title/Summary/Keyword: 동적신경망

Search Result 258, Processing Time 0.024 seconds

Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis (도시침수 해석을 위한 동적 인공신경망의 적용 및 비교)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.671-683
    • /
    • 2018
  • The flood damage caused by heavy rains in urban watershed is increasing, and, as evidenced by many previous studies, urban flooding usually exceeds the water capacity of drainage networks. The flood on the area which considerably urbanized and densely populated cause serious social and economic damage. To solve this problem, deterministic and probabilistic studies have been conducted for the prediction flooding in urban areas. However, it is insufficient to obtain lead times and to derive the prediction results for the flood volume in a short period of time. In this study, IDNN, TDNN and NARX were compared for real-time flood prediction based on urban runoff analysis to present the optimal real-time urban flood prediction technique. As a result of the flood prediction with rainfall event of 2010 and 2011 in Gangnam area, the Nash efficiency coefficient of the input delay artificial neural network, the time delay neural network and nonlinear autoregressive network with exogenous inputs are 0.86, 0.92, 0.99 and 0.53, 0.41, 0.98 respectively. Comparing with the result of the error analysis on the predicted result, it is revealed that the use of nonlinear autoregressive network with exogenous inputs must be appropriate for the establishment of urban flood response system in the future.

Seismic control of offshore platform using artificial neural network (인공신경망을 이용한 해양구조물의 지진시 진동제어)

  • Kim, Dong Hyawn;Kim, Ju Myung;Shim, Jae Seol
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.175-181
    • /
    • 2009
  • An intelligent control technique using a neural network is proposed for offshore structures exposed to sea-bed earthquakes. Fluid-structure interaction effect was considered in developing controller and a training algorithm for the neural network is presented. In the numerical example, the performance of the proposed neural network controller was compared with that of a passive controller and uncontrolled structures. Based on the example, it can be concluded that the proposed neuro-control scheme can be used for offshore structures with nonlinear characteristics due to its interaction with fluid.

An Enhanced Max-Min Neural Network using a Fuzzy Control Method (퍼지 제어 기법을 이용한 개선된 Max-Min 신경망)

  • Kim, Kwang-Baek;Woo, Young-Woon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1195-1200
    • /
    • 2013
  • In this paper, we proposed an enhanced Max-Min neural network by auto-tuning of learning rate using fuzzy control method. For the reduction of training time required in the competition stage, the method was proposed that arbitrates dynamically the learning rate by applying the numbers of the accuracy and the inaccuracy to the input of the fuzzy control system. The experiments using real concrete crack images showed that the enhanced Max-Min neural network was effective in the recognition of direction of the extracted cracks.

A Class of Recurrent Neural Networks for the Identification of Finite State Automata (회귀 신경망과 유한 상태 자동기계 동정화)

  • Won, Sung-Hwan;Song, Iick-Ho;Min, Hwang-Ki;An, Tae-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.1
    • /
    • pp.33-44
    • /
    • 2012
  • A class of recurrent neural networks is proposed and proven to be capable of identifying any discrete-time dynamical system. The applications of the proposed network are addressed in the encoding, identification, and extraction of finite state automata. Simulation results show that the identification of finite state automata using the proposed network, trained by the hybrid greedy simulated annealing with a modified error function in the learning stage, exhibits generally better performance than other conventional identification schemes.

Direct Controller for Nonlinear System Using a Neural Network (신경망을 이용한 비선형 시스템의 직접 제어)

  • Bae, Ceol-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6484-6487
    • /
    • 2013
  • This paper reports the direct controller for nonlinear plants using a neural network. The controller was composed of an approximate controller and a neural network auxiliary controller. The approximate controller provides rough control and the neural network controller gives the complementary signal to further reduce the output tracking error. This method does not place too much restriction on the type of nonlinear plant to be controlled. In this method, a RBF neural network was trained and the system showed stable performance for the inputs it has been trained for. The simulation results showed that it was quite effective and could realize satisfactory control of the nonlinear system.

Design of DNP Controller for Robust Control of Auto-Equipment Systems (자동화 설비시스템의 강인제어를 위한 DNP 제어기 설계)

  • 조현섭
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.55-62
    • /
    • 1999
  • In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. In this paper, to bring under robust ard accurate control of auto-equipnent systems which disturbance, parameter alteration of system, uncertainty ard so forth exist, neural network controller called dynamic neural processor(DNP) is designed. Also, the learning architecture to compute inverse kinematic coordinates transfonnations in the manirclator of auto-equipnent systems is developed ard the example that DNP can be used is explained The architocture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simllations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.he DNP.

  • PDF

A Method of Robust Stabilization of the Plants Using DNP (DNP을 이용한 플랜트의 강인 안정화 기법)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1574-1580
    • /
    • 2008
  • In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. Also, the learning architecture to compute inverse kinematic coordinates transformations in the Plants of auto-equipment systems is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

Analyzing performance of time series classification using STFT and time series imaging algorithms

  • Sung-Kyu Hong;Sang-Chul Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.1-11
    • /
    • 2023
  • In this paper, instead of using recurrent neural network, we compare a classification performance of time series imaging algorithms using convolution neural network. There are traditional algorithms that imaging time series data (e.g. GAF(Gramian Angular Field), MTF(Markov Transition Field), RP(Recurrence Plot)) in TSC(Time Series Classification) community. Furthermore, we compare STFT(Short Time Fourier Transform) algorithm that can acquire spectrogram that visualize feature of voice data. We experiment CNN's performance by adjusting hyper parameters of imaging algorithms. When evaluate with GunPoint dataset in UCR archive, STFT(Short-Time Fourier transform) has higher accuracy than other algorithms. GAF has 98~99% accuracy either, but there is a disadvantage that size of image is massive.

비선형 적응 예측방식을 이용한 비안정 신호 예측

  • 부인형;최성남;김복렬;윤원영
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.159-165
    • /
    • 1995
  • 본 연구에서는 비선형 동적장치에 의해 발생하는 비안정 신호의 비선형 적응 예측을 위한 효과적 방법을 서술한다. 이 방법을 실제 원자력 발전소의 데이타를 이용하여 이상연상(hetero-association) 방식의 예측을 수행하였다. 다입력/다출력의 신경망은 이러한 비선형 예측에 이용할 수 있으나 학습되지 않은 상황에 대한 예측에는 어려움이 있었다. 본 연구에서 서술한 방법은 학습과 실행이 동시에 가능한 형태로 역전파 학습 (backpropagation learning) 알고리듬을 이용한 다층 인식자 (multilayer perceptron) 신경망과 비교하여 비성형 비안정 신호에 대한 우수한 예측 능력을 보여 주었다.

  • PDF

Simulation-Based Damage Estimation of Helideck Using Artificial Neural Network (인공 신경망을 사용한 시뮬레이션 기반 헬리데크 손상 추정)

  • Kim, Chanyeong;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.359-366
    • /
    • 2020
  • In this study, a simulation-based damage estimation method for helidecks is proposed using an artificial neural network. The structural members that share a connecting node in the helideck are regarded as a damage group, and a total of 37,400 damage scenarios are numerically generated by applying randomly assigned damage to up to three damage groups. Modal analysis is then performed for all the damage scenarios, which are selectively used as either training or validation or verification sets based on the purpose of use. An artificial neural network with three hidden layers is constructed using a PyTorch program to recognize the patterns of the modal responses of the helideck model under both damaged and undamaged states, and the network is successively trained to minimize the loss function. Finally, the estimated damage rate from the proposed artificial neural network is compared to the actual assigned damage rate using 400 verification scenarios to show that the neural network is able to estimate the location and amount of structural damage precisely.