• Title/Summary/Keyword: 동적불안정

Search Result 182, Processing Time 0.023 seconds

Numerical Study on Dynamic Behavior of Diffusive-Thermal Instability in $CH_4/O_2$ Conterflow Diffusion Flames (메탄/산소 대향류 확산화염에서 확산-열 불안정으로 인한 화염의 거동에 관한 수치적 연구)

  • Sohn, Chae-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.95-101
    • /
    • 2004
  • Dynamic behavior of diffusive-thermal instability in diluted $CH_4/O_2$ diffusion flames is numerically investigated by adopting detailed chemistry and transport. Counterflow diffusion flame is adopted as a model flamelet. Particular attention is focused on the pulsating-instability regime, which arises for Lewis numbers greater than unity, and the instability occurs at high strain rate near extinction condition in this flame configuration. Once a steady flame structure is obtained for a prescribed value of initial strain rate. transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed Oil the steady flame. Transient evolution of the flame depends on the initial strain rate and the amount of perturbed strain rate. Basically, the dynamic behaviors can be classified into two types, namely non-oscillatory decaying solution and diverging solution leading to extinction. The peculiar oscillatory solution. which has been found in the previous study adopting one-step chemistry and constant Lewis numbers, is not observed in this study, which is attributed to both convective flow and preferential diffusion effects.

  • PDF

Applications of Dynamic Mode Decomposition to Unstable Shock-Induced Combustion (충격파 유도 연소의 불안정성 분석을 위한 Dynamic Mode Decomposition 방법의 적용)

  • Kumar, P. Pradeep;Choi, Jeong-Yeol;Son, Jinwoo;Sohn, Chae Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • Dynamic mode decomposition (DMD) method was applied for the further study of periodical characteristics of the unsteady shock-induced combustion. The case of Lehr's experiments was numerically simulated using 4 levels of grids. FFT result reveals that almost all the grid systems oscillate at frequencies around 430-435 kHz and the measureed one is around 425 kHz. To identify more resonant modes with low frequencies, DMD method is adopted for 4 grid systems. Several major frequencies are extracted and their damping coefficients are calculated at the same time, which is a quantification parameter for combustion stabilization.

FACTS Application for the Voltage Stability with the Analysis of Bifurcation Theory (전압안정도 향상을 위한 FACTS의 적용과 Bifurcation이론 해석)

  • 주기성;김진오
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.394-402
    • /
    • 2000
  • This paper proposes a bifurcation theory method applied for voltage stability analysis and shows the improvement of voltage stability by attaching the FACTS devices in the power system. A power system is generally expressed by a set of equations of highly nonlinear dynamical system which includes system parameters(real or reactive power). Sometimes variation of parameters in the system may result in complication behaviors which give rise to system instability. The addition of FACTS increases the range of voltage stability in the power system. The effect of FACTS which improves voltage stability are illustrated in the case studies by delaying of Unstable Hopf Bifurcation and Saddle Node Bifurcation.

  • PDF

Current Research Status on Flame Response Characteristics to Flow Disturbances (유동섭동에 대한 화염응답 특성의 실험적 연구동향)

  • Seo, Seonghyeon;Park, Yongjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.87-94
    • /
    • 2014
  • It becomes critical to understand an energy coupling mechanism between flow perturbations and combustion heat release rate fluctuations for the understanding of high-frequency combustion instabilities occurring in high-performance combustion/propulsion systems. A significant amount of experimental researches have been carried out to understand flame dynamic characteristics by use of flame transfer functions with artificial flow disturbances. Among them, there exist substantial studies on flame response by the excitation of inlet flow. Recently, experimental studies simulating transversal modes excited in actual combustion systems are under way.

Stability Analysis Using the Amplitude Envelope of Dynamic Pressure in the Rocket Combustor (로켓 연소기의 동압 진폭엔벨롭을 이용한 안정성 해석)

  • Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2021
  • As a measure of susceptibility on the combustion instability, thermo-acoustic instabilities in rocket combustion system was considered for the estimation of the operational stability margin. Growth rate, which governs the asymptotic stability behavior of the system, was determined from the dynamic data measured during combustion tests in order to understand the dynamic characteristics of combustor system. Frequency transform technique was first applied to determine the system parameters such as growth rate and/or damping coefficient for an interested mode from the time series pressure data, and the PDFs of pressure amplitude were extracted from the amplitude envelope of pressure oscillation for the stochastic analysis.

An Analysis of the Mental Models of Middle School Students with Different Learning Style on Plate Tectonics (학습 양식이 다른 중학생들의 판구조론에 관한 정신모형 분석)

  • Park, Soo-Kyong
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.5
    • /
    • pp.734-744
    • /
    • 2011
  • The purpose of this study was to identify middle school students' mental models on plate tectonics and to compare the mental models of verbal-learning-style students with those of visual-learning-style students. 94 student participants in 9th grade were requested to draw and explain three topics; generation of magma, the formation of the mountain range and the interior of the Earth. The criterions for analyzing the mental models are derived from the data of the drawing task. The research results were as follows: The mental models on the generation of magma were classified as 'unstable model,' 'partial casual model,' 'causal model,' and 'conceptual model.' On the other hand, the mental models on the interior of the Earth were classified as 'static unstable model,' 'dynamic unstable model,' and 'conceptual model.' Students holding 'unstable model' were unable to relate the plate collision and the magma generation. They showed a variety of alternative conceptions of study areas, such as 'magma is generated from the core' and 'the mountain is formed by rising of the plates themselves.' Also, visual-learning-style students showed higher proportion of conceptual models and lower proportion of unstable mental models than verbal-learning-style students on three topics. The findings revealed that the students tend to have different concepts on the plate tectonics depending on their learning style.

Dynamic Stability Analysis of Thick Plates with Varying Thickness and Concentrated Mass on Inhomogeneous Pasternak Foundation (비균질 Pasternak 지반에 놓인 집중질량을 갖는 변단면 후판의 동적안정해석)

  • Lee, Yong-Soo;Kim, Il-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.698-707
    • /
    • 2011
  • This paper is to analyze the stability of the thick plate on inhomogeneous Pasternak foundation, with linearly varying thickness and concentrated mass by finite element method. To verify this finite element method, the results of natural frequencies and buckling stresses by the proposed method are compared with the existing solutions. The dynamic instability regions are decided by the dynamic stability analysis of the thick plate on inhomogeneous Pasternak foundation, with linearly varying thickness and concentrated mass. The non-dimensional Winkler foundation parameter is applied as 100, 1000 and non-dimensional shear foundation parameter is applied as 5. The tapered ratios are applied as 0.25 and 1.0, the ratios of concentrated mass to plate mass as 0.25 and 1.0, and the ratio of in-plane force to critical load as 0.4. As the result of numerical analysis of the thick plate on inhomogeneous Pasternak foundation for $u{\times}v=300cm{\times}300cm$ and $a{\times}b=600cm{\times}600cm$, instability areas of the thick plate which has the larger rigidity of inner area are farther from ${\beta}$-axis and narrower than those which has the larger rigidity of outer area.

Factor Effects of Low-Frequency Instability of Brake System Using Complex Eigenvalue Analysis (복소 고유치 해석을 통한 브레이크 시스템의 저주파 불안정성 영향인자 분석)

  • Lee, Ik Hwan;Jeong, Wontae;Park, Kyung Hwan;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.683-689
    • /
    • 2014
  • The present study conducted a parameter effect analysis of low-frequency squeal noise using a numerical simulation. The finite element program ABAQUS was used to calculate the dynamic instability based on a complex eigenvalue analysis. A total of five parameters, including the chassis, wear, piston, material property, and contact condition, were selected to identify the factor effects on a low-frequency squeal noise between 2.5 and 3.1 kHz. The present study found the dominant level of each factor through an analysis of the means in the context of the experiment design.

Investigation of Friction Noise in Ball Joint Under Edge Loading Condition (가장자리 하중조건에서의 볼 조인트 마찰소음 연구)

  • Kang, Jaeyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.779-784
    • /
    • 2014
  • This study provided the analytical model describing the friction-induced noise in the ball joint system under the edge loading condition. The frictional and conformal contact kinematics between the spherical bearing and the hemispherical socket was derived and the dynamic equations of the perturbed motion were established. The numerical results revealed that the bending modes of the ball joint system can become unstable due to friction, and the axial load and contact stiffness strongly influenced the dynamic instability. In contrast, the tilting angle of the socket was not found to significantly contribute to the dynamic instability of the ball joint.

Dynamic Characteristics of Laminated Composite Structures for High-Performance Disaster Prevention of Gyeongbuk Infrastructures (경북기반시설의 고성능 방재를 위한 복합소재 적층구조의 동적특성)

  • Lee, Sang-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1352-1358
    • /
    • 2012
  • The dynamic analysis of delaminated composite structures is carried out based on the higher order plate theory. In the finite element (FE) formulation, the seven degrees of freedom per each node are used with transformations in order to fit the displacement continuity conditions at the delamination region. The boundaries of the instability regions are determined using the method proposed by Bolotin. The numerical results obtained for skew plates are in good agreement with those reported by other investigators. The new results for delaminated skew plate structures in this study mainly show the effect of the interactions between the geometries and other various parameters.